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Abstract

In the enactivist framework, habits are precarious, self-
sustaining, and self-individuating sensorimotor structures:
they are a first approximation of autonomous sensorimotor
entities. We present a prototype computational model which
demonstrates a relatively simple mechanism for facilitating
the emergence of such habits in robots. At its core this
model is a system which retains a history of sensorimotor se-
quences which are compared and re-enacted by the controller
as a function of the recent sensorimotor activity of the con-
trolled robot. To demonstrate an application of this model
concretely, we also present a minimal cognition task loosely
inspired by the role of sensorimotor contingencies in human
colour perception. This task requires that a robot maintains
a set of particular sensorimotor coordinations which allow it
to respond to different objects appropriately, influenced by an
evolved behavioural history.

Introduction
Recent work developing enactive theories of sensorimo-
tor autonomy, sensorimotor agency and sensorimotor life
(Barandiaran, 2017; Barandiaran et al., 2009; Di Paolo et al.,
2017) has provided a new framework for understanding cog-
nition in both natural and artificial systems. As part of these
developments, a renewed emphasis has been placed on a rich
notion of habit (Barandiaran and Di Paolo, 2014; Egbert and
Barandiaran, 2014). The enactive notion of a habit is one of
precarious, self-maintaining sensorimotor structures which
form the basic units of a sensorimotor individual, analogous
to the cells of biological lifeforms. Computational mod-
elling has an important role to play in investigating and test-
ing these theories. A prominent computational model for ex-
ploring habit-based behaviour which heavily influences this
paper is the IDSM (Egbert and Barandiaran, 2014; Egbert
and Cañamero, 2014; Egbert, 2018). Recent work utilizing
the IDSM include using it to illustrate behavioural scaffold-
ing through motor babble (Zarco and Egbert, 2019), and a
variation which abstracts away from explicit sensorimotor
dimensions to investigate decision-making processes (Batta
and Stephens, 2019). Additionally a variation of the IDSM
has been developed which allowed the enumeration some

basic behaviours which are achievable with such a controller
(Woolford and Egbert, 2019).

In order to broaden the scope of possible investigations
into habit and sensorimotor agency, we are developing a new
model which offers an alternative approach to modelling
habits. We present a prototype model called a sensorimo-
tor sequence reiterator (SSR) which is intended as a sim-
ple platform for investigating the self-generation and main-
tenance of a network of habitual behaviours. Whereas the
IDSM is based on historically-determined plastic mappings
of sensorimotor-state to motor-action, this model offers a
different approach: generating activity through the construc-
tion and traversal a network of historical sensorimotor se-
quences. The SSR is has unique advantages which warrant
it to be investigated in its own right. In particular, the SSR
is designed to be simpler in conceptual and analytical terms
than the IDSM, which has often proven to be a challenging
model to incorporate into new research programmes. Addi-
tionally, due to its operational mechanism, the SSR has a dif-
ferent domain of practical applications. Specifically it may
be more suited to investigating networks of multiple habits
because moment-to-moment motor activation has a stronger
history-dependence than IDSM motor activation. In this pa-
per we discuss the functional mechanism of the model and
present a simple investigation with it in order to demonstrate
its potential as an experimental tool. In this task the robot
is required to exploit a handful of contingent relationships
between its motor and sensor activity over time in order to
distinguish between coloured objects and respond appropri-
ately. To bias the robot towards achieving this goal, we use
a method of transferring heritable behaviour through experi-
ence, as opposed to the parametric tuning of classical mini-
mal cognition evolutionary robotics experiments.

Model
The SSR is a robot controller which functions by comparing
recent sensorimotor activity to past activity and attempting
to repeat the most similar historical behaviour. The core el-
ement of the SSR is what we will refer to as its historical
sequence, which is its representation of the recent history



of its controlled robot’s discrete sensorimotor-states (SM-
states) as a sequence over time. A robot’s SM-state is rep-
resented as the pair of a particular motor action and the
sensory state which results from enacting that action in the
environment, a system loosely motivated by Maye and En-
gel (2011). As a minimal illustration of this, let us con-
sider a robot which moves around a 2-dimensional white
and black checkerboard-like environment in discrete steps
(U,L,D,R), and senses the colour of the square on which
it sits (w, b). If the robot were to start on a black square and
take four moves in the order up, left, down, and left again,
its sequence of SM-states from the first action would be rep-
resented aswU → bL→ wD → bL, as illustrated in Figure
1.

A SSR builds its historical sequence as it operates, uses it
to determine future actions, and modulates it as a function
of those actions. Each individual SM-state in the histori-
cal sequence is represented by a node, which describes the
SM-state in terms of an instantaneous sensory state S and a
motor action M , and also represents the motor action taken
from that SM-state, O, and a plastic weightingW which is a
function of both the node’s age and the relationship between
itself and previous nodes. Thus an individual node may be
expressed as a tupleN = 〈S,M,O,W 〉, and can be thought
of as an instance of a historical motor-state transition with
an intermediary sensory state. Each node is linked to from
another node representing the previous state and itself links
to a node representing the next SM-state. Nodes survive for
a finite amount of steps, H , and are then destroyed, so the
historical sequence is essentially a shifting window across
the robot’s H most recent states.

We now explain how the historical sequence is generated.
Nodes are constructed as the SSR’s robot interacts with its
environment. Each iteration a new node is generated in the
following process: First, the SSR selects a motor action for
the robot to take in the current time step. If there is already
an active node this action is set as the node’s outward action.
The robot then enacts the selected action in the environment,
and its sensory state is updated. The pairing of the motor
action and resulting sensory state is treated as the robot’s in-
stantaneous SM-state. The current active node becomes in-
active and is linked to a newly generated active node which
represents the new SM-state. This is true even if the new
SM-state is identical to the previous. The new node’s out-
ward action is left undefined until it is determined in the next
iteration, as in the fourth node in Figure 1.

The SSR chooses which action to take in a manner which
causes previous sequences of behaviour to be reiterated
when they resonate with the regularities of the robot’s en-
gagement with its environment. Motor activation is a func-
tion of the similarity of the current node to past nodes and
the weight of the most similar past nodes. The SSR finds the
node which maximizes these elements and selects the ac-
tion that was taken from that past node to enact again in the
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Figure 1: A sequence of actions in the environment and the
corresponding nodes in the SSR’s historical sequence.

current iteration, with a degree of randomisation. Of these
elements, the similarity metric is the first and most signifi-
cant. Similarity between present and past nodes is evaluated
in terms of the sequence of states leading up to those nodes.
Individual nodes may share the same SM-state with other
nodes, and distinct subsequences of nodes which succes-
sively share SM-states are said to be more similar the longer
they are. During motor activation, the SSR evaluates those
past nodes which have the same state as the active node in
an attempt to find a matching node which will determine the
selected action. Potential matching nodes are ranked based
on the similarity of the sequence of their preceding nodes to
the sequence of nodes that precede the active node.

The process of evaluating the similarity of matching
nodes is as follows: For a given active nodeNa with a partic-
ular SM-state, there are any number of nodes with the same
SM-state in the historical sequence. Let us assume for the
moment that there is at least one potential matching node
and call one of them Nb. To compare the similarity of Na
to Nb, we must examine the states of the preceding nodes of
each. Nodes are compared in reverse order, and we describe
as Na−1 the node preceding Na and so on. Na−1 is com-
pared to Nb−1, Na−2 is compared to Nb−2, et cetera. Sim-
ilarity is measured in terms of the length of the sequence of
each node’s predecessors with identical SM-states, so when
the SM-state ofNa−x is dissimilar to that ofNb−x, and these
are the first dissimilar nodes in the reverse sequence,Na and
Nb are said to have a similarity of x−1. More formally, two
nodes Na and Nb are said to have a similarity of η if:

NSM
a−i = NSM

b−i , i ∈ Z | 0 ≤ i ≤ η,
NSM
a−(η+1) 6= NSM

b−(η+1)

(1)

Where the superscript SM refers to taking only the S and
M elements of the tuple Nx. The past node with the great-
est similarity is selected as the best match. This mechanism
often yields ties between matching nodes with different out-
ward actions, and in order break ties we implement a weight-
ing mechanism. A node’s weight is initially set as an incre-
ment of the weight of its matching node during creation, and
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Figure 2: Example of a network generated by treating nodes as equivalent to their matches, using abstract sensor states
A,B,C,D and motor states 1, 2, 3. The left part of the figure illustrates 16 nodes as they appear in the SSR’s historical
sequence, the network on the right illustrates how subsequences lead back to their own re-enactment, creating cycles.

decreases with age. This weight is formally defined as

W = (Wm +B)×
(
1− 1

e
10(H−τ)

H

)
(2)

where Wm is the weight of the node which was its match
at the time of its generation; B is a parameter which de-
fines the amount that the new node’s weight is incremented
over its matching node’s weight; τ is the time since the cre-
ation of the node in discrete steps; and H is the aforemen-
tioned maximum age of a node before it is destroyed. This
weight is intended to capture the notion of reinforcement of
behaviour through repetition. Weights are propagated when
nodes pass their action on to future nodes, and thus nodes
which represent actions with a long history have heavier
weights. When multiple matching nodes have equal simi-
larity, that one which has the greatest weight is selected as
the best node. Since the decay function is continuous, fur-
ther ties are unlikely, but any final tie-breaking favours older
candidate as the best matching node.

The final factor influencing motor activation is the ran-
dom exploration element. This is a small chance that the
controller will ignore the action of the selected node and in-
stead perform a random action, uniformly selected from the
set of all possible actions. The probability of this occurring
depends on the similarity of the best matching node to the
active node and is given as

P (r) = max
(
0.5

(
1− η

D

)
, 0.005

)
(3)

where η is the similarity of the best matching node and D
is a parameter indicating the similarity at which the mini-
mum probability of selecting a random action is achieved.
Note that if there is no matching node in the historical se-
quence then P (r) = 1. When a random action is selected,
the previously found best matching node is ignored and a
different node is found to be considered the best match for
the purposes of assigning a weight to the active node. This

is achieved by finding all historic nodes which have the
same SM-state as the active node and which also have the
same outward action as that which was selected randomly.
Of these nodes, that which is the most similar and has the
strongest weight lends its weight to the active node, even if
it is less similar and/or weaker than the original best match.
Note that it is possible that the action that is selected ran-
domly will be the same as that of the original matching node.
In this case that same node will be reselected as the best
match.

The typical behaviour of a SSR changes as it matures.
This is due to the circular dependency in the way that the his-
torical sequence is generated as the SSR selects actions for
its robot at the same time as motor activation is determined
by the historical sequence. In its simplest form, a SSR be-
gins with no behavioural history to draw from. Therefore the
initial phase of its behaviour is mostly random, with active
nodes having either no matching nodes or relatively dissim-
ilar nodes in the historical sequence. This is an important
quality because it means that the SSR has an inherent ten-
dency to more freely explore the potentials of its sensorimo-
tor environment in its early stages, akin to motor babbling in
infants (see also Zarco and Egbert, 2019). As the historical
sequence grows larger, the SSR’s behaviour becomes grad-
ually more deterministic as repeatable patterns of activity
form.

Because nodes in the historical sequence have a limited
lifespan, behaviours which have not been enacted for too
long are lost. When a sequence of states is reiterated, the be-
haviour itself survives in the historical sequence even after
the original nodes representing the behaviour are forgotten.
As a simple example, the sequence Uw → Lb → Dw →
Rb → Uw → Lb → Dw → Rb may be treated as two
iterations of the smaller sequence Uw → Lb→ Dw → Rb.
This equivalence is captured in the SSR’s weighting mecha-
nism, which is intended as a reflection of the frequency and
recency of an enactment of a particular behaviour. Let us



number these states from 0 to 7: Assuming that these are the
first states in the history sequence, if the weights of the nodes
representing states 0 to 3 have a value of 1, then the weights
of nodes representing 4 to 7 will have weight 1 + b, reflect-
ing the fact that those latter states are a reenactment of the
former. Through this mechanism, behaviours which are re-
peated more frequently are more likely to be repeated in the
future because their weights are compounded. Furthermore,
by treating those nodes which represent reenactments of pre-
vious states as equivalent to those previous states’ nodes, we
may recast the linear historical sequence as a network with
cyclical subsequences, as in Figure 2. The significance of
this will be addressed in the final section.

Investigation and results
To briefly illustrate the capacities of the SSR and to provide
a case in which to analyse it behaviour, we now present an
investigation in which a robot controlled by a SSR reliably
performs a minimal object discrimination task. This exper-
iment is loosely inspired by investigations into the relation-
ship between eye saccades and colour perception (Bompas
and O’Regan, 2006; O’Regan and Noë, 2001). In a time-
discrete simulation, the robot is presented with an environ-
ment filled with a mix of three varieties of objects coloured
either red, green, and blue. The robot may move around the
environment in a limited fashion by adjusting its bearing as
it moves forwards steadily, and when it moves over an ob-
ject that object is ‘eaten’ and disappears. The robot is tasked
with eating the blue objects while avoiding the red and green
objects. The task is made less trivial due to the limited sen-
sory information available to the robot: There are only four
possible sensory states available to the robot, states L,F,R,
and N , which respectively correspond to the robot detecting
an object in its left sensor, front sensor, or right sensor, or
detecting no object at all. The robot has a limited ability to
distinguish between object colour, based on the way its sen-
sors are triggered as it moves. Specifically, the robot may
only detect red and blue objects when it is turning right, and
may only detect green and blue objects when it is turning
left. It detects all three varieties of objects when it is not
turning at all. The sensors themselves do not provide infor-
mation regarding the object’s colour, for instance if the robot
detects an object in its forward sensor while turning left, its
sensory state will be F regardless of whether that object is
blue or green. This sensory mechanism is illustrated further
in Figure 3.

The effect of this mechanism is that no instantaneous state
information is sufficient to indicate the exact colour of a de-
tected object, and in order to identify an object and hence
respond to its stimulus ‘correctly’ the robot must employ
an active exploratory strategy to integrate historical sensory
states. We will see shortly that the SSR is capable of devel-
oping such a strategy, after we briefly describe the precise
details of the experiment.

S = N S = R

S = N S = R
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Figure 3: Examples of the relationship between actions, per-
ceptions, and the environment for the investigated robot.
Top left: No object is triggering any sensor. Top right: A
green object triggers the robot’s right sensor while it is not
turning either direction. Bottom left: A green object is in
the robot’s right sensor’s arc but the robot is turning right so
the sensor is not triggered. Bottom right: The same scenario
but with a red object, which does trigger the sensor when the
robot is turning right.

The robot’s body is a circle with a radius of 3 units, and as
mentioned it has 3 sensors which each detect objects within
a fixed sector and a range of 28 units. The front sensor de-
tects any object in the sector within ±π

12 radians of the front
point; The left sensor detects objects between −π

4 and −π
12

radians away from the front point, and the right sensor de-
tects those objects within the sector between π

4 and π
12 away

from the front point. The robot has a single motor under its
control, which rotates the robot by a fixed amount in a single
time step. There are 7 possible states of this motor: 3 corre-
sponding to light, moderate, and hard left rotations, 3 corre-
sponding to equivalent rightward rotations, and 1 which cor-
responds to no rotation. Additionally to rotation, the robot is
driven forward in the direction of its bearing at a steady rate
of 1 unit per time step, but this is not under the control of the
SSR. Each time step proceeds in the following order: First
the robot rotates according to its motor state, it then moves
forward one unit, it then eats any object within its bodily
radius, and finally it updates its sensory state. After this se-
quence the SSR updates its historical sequence and selects a
rotation action for the robot to take in the next step.

The arena is a two dimensional field of size 400 by 400
units with toroidal boundary conditions, and its only features
are the 81 objects, divided evenly among the three colours,
positioned along a regular grid 40 units apart. This regular
positioning simplifies the model by ensuring that the robot



Figure 4: The robot (black object) in an example initial en-
vironment. Objects disappear when they are eaten and are
not replaced.

can never detect more than one object at any time. The ar-
rangement of the colours is shuffled randomly at the start of
each experimental trial so as to prevent the success of rote
trajectories through the environment. An example environ-
ment is illustrated in Figure 4. Finally, the SSR’s parame-
ters as per Equations 2 and 3 are set by hand to H = 4000,
B = 1, and D = 6.

We now explain how a particular SSR may be used to
control a robot to reliably perform the desired task. Despite
the similarity to a typical evolutionary robotics minimal cog-
nition experiment, standard evolutionary techniques are not
suitable for selecting and optimising a particular configu-
ration to a desired task. Unlike a neural network, for in-
stance, the SSR has intrinsic behavioural dynamics which
cannot be readily manipulated through parametric optimisa-
tion. Instead, we use an initial sequence of states to seed the
behaviour of the SSR, as opposed to the default of having
the SSR start with an empty history. A candidate solution
therefore is a sequence of states which can be inserted into
the start of a SSR’s historical sequence over many different
trials, causing it to reliably produce behaviour in which the
robot eats blue objects and avoids the others. Since the only
inherited behaviour comes in the form of an historical ‘expe-
rience’, this demonstrates a relatively unexplored method of
influencing robot behaviour in a manner which could be con-
sidered analogous to instinctive behaviour or that acquired
through parental or social scaffolding.

To find solutions, we used a simple genetic algorithm. For

the first generation of 700 individuals the SSRs operated as
normal to generate their historical sequences. The first 750
nodes in these sequences then formed a genome which was
passed along to descendant individuals. The fitness of the
solution was measured by a per-trial fitness function of

F = b− r − g (4)

where b, r, and g are the number of blue, red, and green
objects eaten over the course of a trial of 10000 time steps.
This fitness value was averaged across 10 trials, with ran-
domised start positions and arrangements of objects, to de-
termine the final fitness of the individual. Despite the naivety
of the implementation, this search yielded candidates which
were sufficient for our illustrative purposes here.

After using the evolutionary algorithm to select a genome
of initial actions which yielded a good average fitness, we
then ran 10 further simulations of 10000 steps with the best
candidate genome, and selected a random simulation for fur-
ther analysis. This particular simulation yielded a fitness
of F = 22 according to Equation 4, with b = 22 and
r = g = 0. Note that this was slightly atypical as in most
cases the robot would eat a few red and/or green objects.

We will uses results from this investigation to illustrate
the internal behaviour of the SSR, highlighting: how certain
behaviours repeatedly resonate with (i.e. are drawn out by-
and suitable for-) particular environmental regularities; how
the structures which form enable the robot to perform the
task; and how certain behaviours sustain themselves through
re-enactment and how others fail to do so.

This section is intended to be illustrative, rather than an
exhaustive analysis of all of the possible behaviours with
the SSR in this simulation. Thus we will isolate a handful of
useful examples to discuss here.

As discussed earlier, a linear sequence of nodes can be
presented as a digraph such as the one in Figure 5, where
each vertex represents a group of equivalent nodes, and an
edge between any vertices u and v represent a transition
from any node represented by u to any node represented
by v. We are able to see that there are cycles through-
out the graph, and furthermore in most cases these cycles
each tend to show a high degree of context sensitivity, i.e.
they are enacted in a single environmental condition such
as when a particular-coloured object is within the robot’s
scanning range. These cycles form interesting structures -
they emerge through the robot’s exploration of its environ-
ment, they cause the robot to re-establish the conditions for
their own enactment, and they are revisited when the reg-
ularities of the robot’s sensorimotor engagement resonates
with them. There are three distinctly blue structures in the
graph, and we will focus on the structure detailed in Figure
6, which represents the behaviour most frequently enacted
on order to eat a blue object. We will refer to this as the
α−structure. Over the 10000 steps of the simulation, the
robot encountered a blue object 42 times. By ‘encounter’



Figure 5: A network with vertices representing equivalent
nodes for the presented simulation, as in Figure 2. Ver-
tices which are visited fewer than 5 times have been ex-
cluded. RGB values indicate the objects which are encoun-
tered as edges are traversed and nodes visited - for instance
a deep blue indicates that the robot is always encountering a
blue object at a particular vertex, green indicates that always
green objects are encountered, and intermediate shades in-
dicate an mixture of encounters.

we refer to an unbroken sequence of steps in which there is
an object within the robot’s scanning range. 12 of these en-
counters were extremely short - only lasting 2 or 3 steps. Of
the remaining 30 encounters, 22 ended when the robot eats
the object. Figure 7 illustrates the robot’s behaviour in those
22 encounters. The majority of these approaches are domi-
nated by repeated enactments of behaviour described by the
α−structure.

In the network, the α−structure consists of four intersect-
ing cycles which consist of left, right, and null turns, but
only F and R sensory states. Qualitatively the behaviour
of the robot in this structure can be described as scanning
left and right in a manner which distinguishes the colour of
the encountered object, and moving forward towards blue
objects if they are to the front, or bearing rightwards if the
object is to the right. An interesting feature of the structure
is the junction from vertex 54 leading to either vertex 55 or
61. The subsequence of 54 → 55 → 56 → 57 → 58 → 59
describes a gentle rightward turn when the object is detected
to be approximately to the fore, whereas the subsequence of
54→ 61→ 59 describes a stronger rightward turn when the
SM-state indicates that the object is further to the right. The
alternation of these two subsequences allows the robot to
adjust its bearing appropriately as it approaches the object.
The alternation of left and right turns in the structure allows
the robot to distinguish the colour of the encountered object
and take evasive action when the object is not blue. Ver-
tices 54, 59, and 60 are occasionally visited when the robot
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Figure 6: A detail from the network in Figure 5 illustrat-
ing the α−structure (vertices 54 to 61) and other closely
associated vertices. The vertices are coloured as in Figure
5. Vertices 50 to 53 are a subsequence which is not part of
the cycles in the α−structure but frequently lead into it (see
Figure 7), and vertices 125, 118, 119, and 120 are parts of
subsequences which lead away from the structure.

encounters green or red objects, and are connected to other
sequences which are enacted in those cases. As an example,
vertex 54 is visited 18 times when the robot is encountering
a green object, and 67 times when it is encountering a blue
object. However of the three vertices which succeed 54, 55
and 61 are only visited when the robot is encountering a blue
object and 118 is only visited when the robot is encounter-
ing a green object. Thus we can localise a sort of discrimi-
nating behaviour occurring around vertex 54, whereas other
vertices in the α−structure could be said to visited when the
robot is adjusting its bearing to head closer to blue objects. It
is important to note that this behaviour at vertex 54 is due to
its relationship to preceding vertices, not simply the robot’s
instantaneous SM-state. At vertex 54, the robot’s SM-state
is 1R, which indicates a hard leftward turn leading to a trig-
gering of the right sensor, and from vertex 54 the robot a
slight right turn. However at vertex 120 the robot has the
same SM-state but takes a different action - a second hard
left turn. This is an advantageous behaviour for the task at
hand: Because vertex 120 is in a sequence which resonates
when the robot encounters a green object, the subsequent
action to take another leftward turn serves to make it more
likely that the robot will avoid green objects. On the other
hand since vertex 54 is visited in sequences which resonate
when the robot encounters blue or green objects, the sub-
sequent rightward turn serves to help distinguish blue and
green objects and therefore lead to sequences which cause
the robot to avoid or approach the object depending on the
sensorimotor consequences of that action.

The final aspect of the SSR we will illustrate here is the



F = b−r−g b r g

before objects removed 18.6 22.1 2.11 1.47
after objects restored -7.60 10.2 10.1 7.64
no initial history -4.79 5.47 5.02 5.24

Table 1: Mean number of objects eaten over 200 trials. The
third row provides a baseline comparison for robots without
the evolved initial history.

precariousness of the emergent behavioural structures. In
order to illustrate the effects of this precariousness, we ran
a short additional investigation to examine the effect of dis-
rupting the regular sensorimotor contingencies of the robot’s
engagement with the environment. Using the same initial
historical sequence as evolved in the main investigation, we
ran 200 additional simulations of 30000 steps, divided into
three phases: The first 10000 steps were identical to the pre-
vious simulations (Phase 1). At step 10000, all objects were
removed and the robot continued to move around an empty
environment (Phase 2). At step 20000, all objects (including
those previously eaten) were restored to their original posi-
tion, and the robot’s fitness was reset to 0 (Phase 3). We
averaged the fitnesses from Phase 1 and Phase 3 over the
200 simulations, and as expected find a significant decrease
in fitness in Phase 3 compared to Phase 1. This is a result
of the useful structures - which were initially found in the
evolved genome and then sustained through regular engage-
ment with the coloured objects - being lost when they cannot
be reinforced in the middle phase of the simulation. iSince
most of the structures formed in the first phase are not able
to be reinforced during the second phase, the robot loses its
ability to respond to the objects in the way we desire when
they are restored in the third phase. The results of these trials
are presented in Table 1.

Discussion
The enactive habit is an entity which is self-individuating,
precarious, and self-reproducing. The SSR investigated here
supported several such entities. At the lowest level, we see
self-individuation with the way that subsequences which are
repeated successively become increasingly likely to repeat
themselves ever further. In the projection in Figure 5 these
subsequences are visible as cycles. By their cyclical nature
they are inherently self-reproducing because they create the
conditions for their own re-enactment by repeating earlier
SM-states. Some such cycles are more readily revisited than
others, because they resonate with more frequently encoun-
tered environmental regularities. Those cycles which restore
themselves reliably, and which are revisited frequently, form
the core of the SSR’s overall structure. While these are cases
of minimal self-individuation, there are also instances - such
as in the case of the α−structure - where multiple cycles
may be tightly associated with one another and frequently

Figure 7: Robot’s trajectories for the 30 steps leading up to
each of the 22 blue object consumptions. Trajectories are
transposed such that the eaten object is at position (0, 0) and
the initial bearing is north. Coloured segments indicate the
relationship between the SSR’s active node and the vertices
on the graph in Figures 5 and 6.

lead into each other, and with clear boundaries (e.g. ver-
tices 59, 60, and 61 in Figure 6) which connect to other
structures which are not as intertwined. These structure’s
are what we consider to be the locus of the habits in the
SSR. In addition, there are important subsequences which
do not constitute habits as they do not regularly cycle back
on themselves, but are nevertheless significant to the overall
behavioural structure. The sequence of vertices 50 to 53 are
an example of this (illustrated in Figures 6 and 7). In all but
one case this sequence is not repeated in succession, but in
all cases it leads into the α−structure. In effect it represents
a transitional structure between habits.

The averages in Table 1 illustrate the precariousness of the
habits. In that experiment, some structures are lost because
the robot can no longer interact with the objects, whereas
the structures which resonate when the robot sees nothing
are reinforced. This has interesting consequences for how
the behaviour of the system changes over time. In addition
to the obvious consequences discussed in the previous sec-
tion, we also see in Table 1 that the evolved robot eats more
objects of all colours in the third phase than the unevolved
ones eat. This is likely due to the fact that some structures
are reinforced through the second phase, specifically those
corresponding to behaviour when the robot encounters no
objects. In the evolved robot, this behaviour tends to be



somewhat more efficient for exploring and finding new ob-
jects, whereas the unevolved robots have a strong tendency
to move in circles. For similar reasons, the evolved robot
shows a slightly different response to green objects. This is
due to the fact that certain subsequences of behaviour can be
enacted when the robot is encountering red or green objects
or no object at all, and hence can be reinforced even without
encountering objects.

Our investigation also explores the relationship between
habits and broader behavioural strategies. In addition to
being an example habit, we have focussed our analysis on
the α−structure because it is the most clear example of a
structure in the behavioural network enabling the robot to
perform the task we have set it. The structure could po-
tentially be understood as a sort of Piagetian sensorimotor
scheme (Boom, 2010; Di Paolo et al., 2017). It represents a
small repertoire of low level sensorimotor activity which al-
lows the robot to perform the higher order action of ‘eating
a blue object’ under a variety of similar but distinct con-
ditions. Linked to other structures, such as those in which
the robot bears away from non-blue objects, there is a clear
progression from individual sensorimotor states up to a co-
hesive behavioural strategy.

In our investigation we are able to, in a sense, evolve an
adaptive behaviour through generating an initial historical
sequence. However the use of the genetic algorithm means
that the adaptive element is extrinsic to the SSR mecha-
nism itself, and requires imposed viability constraints which
are not directly related to the formation of habits (see also
Beer, 1997, p.265). An open problem with understanding
habits in terms of sensorimotor agency is the question of
how a habit itself can be adaptive. In order to move to-
wards a model of sensorimotor agency, one approach would
be to extend the model to one which has a sort of ‘habit-
ual metabolism’ and which alters its structure to adaptively
regulate this metabolism in the face of changing environ-
mental regularities. The SSR in the minimal form presented
here does not capture such a notion of adaptivity at all, but
we believe there is potential for it to be developed in this
direction and should be the next step in research involving
this model. Additionally, the results in Table 1 suggest that
there is potential to use this model to investigate the rela-
tionship between habit and behavioural development, in that
exposing the robot to particular environments sequentially
may influence the SSR’s response to later environments. As
a minimal example, if the robot has historically interacted
with a green object before it interacts with a blue object,
its response to the blue object will potentially be influenced
in part by its prior interaction with the green object. Taken
further, this may be the basis for an interesting way of ma-
nipulating the robot’s behaviour in a more developmentally
meaningful way than the typical optimisation approach em-
ployed here. nother step could be to explore developing a
system of clustered SSRs, which are in competition for con-

trol of their robot and which possess a mechanism through
which they modulate their own historical sequences in re-
sponse to the current sensorimotor environment. Such a
cluster could provide a step towards modelling an adaptive
ecology of habits (eg. Di Paolo et al., 2017).
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