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Living and life-like systems vary in viability. They are
alive or dead, healthy or unhealthy, getting better or worse,
or dying. Despite the ease of applying these descriptions in-
formally, there do not yet exist general methods for richly
quantifying viability or health in such systems —even when
every aspect of the system is available for experimental vari-
ation and measurement. Nevertheless, for a given system
of interest, it is sometimes possible to distinguish between
states where the system will persist for the foreseeable fu-
ture (there are termed viable states) and those where it will
not. This is perhaps the most basic, binary classification of
states in terms of viability and it can be used to identify dif-
ferent regions in ‘viability space’ (see Figure 1 and Barandi-
aran and Egbert, 2013). An improved measure would make
it possible to not just categorize systems but to compare the
relative viability of two states that are in the same category,
i. e. that are both expected to persist or both expected to
die. This type of measure would make it possible to iden-
tify whether a system is becoming more or less viable, or to
evaluate the influence of a given external perturbation upon
viability, thereby enhancing our ability to understand and in-
fluence the viability of complex life-like systems.

One way to formulate such a measure is to assume that the
system of interest is subjected to unpredictable fluctuations
that perturb its autonomous dynamics. If this is the case, the
argument can be made that the farther away a viable system
is from the viability-interface (the surface between the viable
and non-viable regions of viability space), the more viable it
is, as there is a smaller set of perturbations that will cause
the system to become non-viable. (A similar argument can
be used to describe non-viable systems as being more and
more non-viable as their distance from the viability bound-
ary increases.) There is a problem however: the dimensions
of viability space (i. e. the essential variables) are almost
always measured in entirely different units, and these units
have no relation to viability. As an example, an organism
might require a specific range of temperature to survive and
a specific range of atmospheric pressure. It should be clear
that the units for measuring these phenomena do not relate to
viability and nor do they relate to each other. A perturbation

Figure 1: Viability class for various initial conditions in a
simple two-dimensional model of a bio-reactor. Randomly
sampled initial conditions plotted in red do not survive,
whereas those plotted in black do. Details of the model are
not relevant and are not presented in this abstract.

of 3 atmospheres will in general not have the same influence
on viability as a change of 3 degrees! Further work is needed
if we are to develop a meaningful measure of distance in vi-
ability space. 1

In a soon-to-be submitted paper, we have proposed a
method that uses the shape of the viability interface to
rescale the system’s essential variables so as to define a
normalized viability space, where a perturbation of a given
magnitude has the same likelihood of crossing the viability
regardless of the direction of the perturbation. The method
works by calculating the extent to which the viability-
interface “faces” each dimension and then scaling the values
in that dimension by this amount. More formally, for each
dimension of viability space, X , we identify IX , the aver-
age magnitude of the X-component of the viability-interface
surface normals:

IX =

∫∫
I
||n̂ · êX|| dI

I
, (1)

1This problem was first brought to Egbert’s attention in a sem-
inar given by Nathaniel Virgo and Simon McGregor at the Univer-
sity of Sussex in or around 2009.



and use this value to rescale values into normalized units,
thus: x̂ = IXx. In the above Equation, êX is the basis unit-
vector for dimension X , and n̂ is the surface normal of I ,
the viability-interface.

In normalized viability space, there is a meaningful mini-
mal distance between any given state and the viability inter-
face: on average over initial-conditions, a perturbation of a
given magnitude will have an equal chance of crossing the
viability-interface regardless of the angle of the perturba-
tion vector. In other words, a perturbation of given magni-
tude in normalized viability space has the same chance of
transforming a randomly selected viable state into a non-
viable state (or vice versa) whether it is a perturbation of
one essential variable (e. g. pressure) or another (temper-
ature), or a combination thereof. Figure 2 shows the same
system as Figure 1, but plotted in normalized viability space,
with shading used to indicate a viability gradient based upon
the minimum distance to the viability interface.

Figure 2: The same system, plotted in a normalized viability
space with signed-distances to the viability interface indi-
cated. The lower the value, the healthier the system, with
negative values corresponding to viable states, i. e. states
that in the absence of external perturbation, are expected to
persist for the foreseeable future.

Normalizing viability space in this way allows us to com-
pare states in terms of their relative viability. This in turn
allows us to describe how a system’s viability is chang-
ing over time. When additional information is available
concerning the system’s autonomous dynamics, and/or the
cost/difficulty of influencing the system’s essential vari-
ables, it is possible to make additional observations relevant
to the system’s viability, such as to identify the future state
from which the minimum perturbation is necessary to cross
the viability interface.

Using information theoretical analysis, it is also possible
to identify correlation between variables and these measures
of viability. This allows us to identify and evaluate the qual-

ity of viability indicators, variables that are good at predict-
ing a system’s viability. This connects with some of our
previous work, where we have shown how an organism can
respond to their own viability-indicators, and in so doing
become capable of (i) adapting to phenomena neither it nor
its ancestors have ever previously experienced (Egbert et al.,
2010); and (ii) adapting to changes in its own needs and abil-
ities, resulting in a more evolvable organism (Egbert et al.,
2011; Egbert and Pérez-Mercader, 2016).

Within the enactive approach (Stewart et al., 2010), the
concept of viability has been used to naturalize concepts of
adaptivity, agency and normativity. In particular, Di Paolo
(2005) compares trajectories in terms of their dynamics rel-
ative to the viability boundary to formulate a definition of
adaptivity. In a previous publication, we presented an argu-
ment showing how an organism’s viability can be used to
develop a naturalized concept of normativity (Barandiaran
and Egbert, 2013). The research presented herein extends
these works, providing a way to normalize viability space
and compare states in terms of viability and to measure dis-
tance from the viability boundary.

More broadly, identifying viability-indicators in natu-
ral systems could improve our ability to predict or influ-
ence their viability, and similarly identifying high quality
viability-indicators in synthesized protocells will allow us to
better understand how to create artificial life-forms that are
capable of surviving in the diverse conditions found outside
of tightly controlled laboratory environments.
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