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Abstract

In the 1950s, the famous cyberneticists Gordon Pask and
Stafford Beer conducted a series of remarkable electrochem-
ical deposition experiments. By applying an electric po-
tential across electrodes submerged in an acidic solution of
ferrous sulfate, they could bias the growth of electrochemi-
cal deposition so as to form functional structures including
sensory structures capable of distinguishing between differ-
ent sounds. Unfortunately, the details of their apparatus and
methods are unavailable. As a consequence, their experiment
has not been replicated, and the precise mechanisms under-
lying their results remain unknown. As preliminary steps to-
ward recreating their remarkable results, this paper presents a
new computational model that simulates the growth and de-
cay of dendritic structures similar to those investigated by
Beer & Pask. We use this model to demonstrate a plausible
mechanism through which an electrochemical system of this
kind could respond to a reinforcement signal. More specif-
ically, we investigate three strategies for varying the applied
electrical current so as to guide the formation of structures
into target forms. Each presented strategy succeeds at influ-
encing the growth of the structure, with the most successful
strategy involving a ‘constant-current’ feedback mechanism
combined with an externally driven oscillation. In the discus-
sion, we compare the adaptation of these structures with var-
ious biological adaptive processes, including evolution and
metabolism-based adaptive behaviour.

Introduction
The research presented below is inspired by the electro-
chemical deposition experiments undertaken by Gordon
Pask and Stafford Beer in the 1950s. By applying a cur-
rent across electrodes placed in an acidic solution of fer-
rous sulfate, these researchers induced the electrochemical
deposition of iron onto the negatively charged electrode(s)
(see Fig. 1). By varying the applied voltage, they could
choose when iron was deposited and when it dissolved back
into solution, and using this technique to reward (i. e., stabi-
lize) desired growth and punish (i. e., dissolve) less desirable
growth, they grew an iron ‘ear’ that was capable of distin-
guishing between two different frequencies of sound.

“We have made an ear and we have made a magnetic re-
ceptor. The ear can discriminate two frequencies, one

Figure 1: Photograph of electrochemical deposition ex-
periments conducted by Gordon Pask and Stafford Beer
in the 1950s. From (Pask, 1958) and (Cariani, 1993).

of the order of fifty cycles per second and the other
of the order of one hundred cycles per second. The
‘training’ procedure takes approximately half a day and
once having got the ability to recognize sound at all, the
ability to recognize and discriminate two sounds comes
more rapidly ... The ear, incidentally, looks rather like
an ear. It is a gap in the thread structure in which you
have fibrils which resonate at the excitation frequency.”
(Pask, 1959, p. 261)

From their description, Pask and Beer’s system seems to
exhibit a kind of reinforcement learning: it develops spe-
cific structures (such as fibrils with a particular resonant fre-
quency) in response to a reward signal (current), without be-
ing given precise instructions on what form the structures
should take. This is remarkable because it is a relatively sim-



ple physical system and lacks any obvious system for assign-
ing credit or propagating the reward signal. Our goal is to
understand what makes this possible, and whether the prin-
ciples underlying it will generalise to other kinds of physical
or dynamical system.

In biological evolution, a directed process of selection bi-
ases undirected (i. e., random) genetic variation, resulting in
the formation of adaptive structures. Pask and Beer’s ex-
periments might be described in similar terms: iron accrues
rather randomly, providing a kind of stochastic growth—and
direction is given to this change via the selective variation
of the applied current. This evolution-inspired description
given above seems plausible, but growing an ‘ear’ merely
by changing a voltage applied to a solution of ferrous sul-
fate seems to almost border on magic. How did this system
work and what are the limits of this technique for growing
functional structures, using only a reward/punishment-like
feedback? If it is a kind of physical instantiation of a search
algorithm, what is the search space like—are there lots of lo-
cal minima or is it better captured as a very high-dimensional
space full of neutral networks (Huynen, 1996) that facilitate
adaptation to a wide variety of selection pressures? Does the
evolutionary metaphor completely describe or explain how
these kinds of systems might adapt to different ‘selection
pressures’ (i. e., reward schemes), or are there other dynam-
ics that don’t fit so nicely into an evolutionary metaphor.

We do not yet know the answer these questions. Unfor-
tunately, Beer and Pask failed to publish this area of their
research in sufficient detail that others might repeat it. In
the next section, we present our first steps toward recreat-
ing Beer and Pask’s results, in the form of a computational
model of electrochemical deposition. We use this model
to evaluate the possibility of using dynamically modulated
voltage so as to steer the growth of the structure in desired
forms. But before we delve into the details of our model,
we first review some related research which highlights some
reasons that we find this system interesting.

Related research
There have been a number of efforts to recreate Pask’s
work—see e. g. the projects listed in (Boden, 2010, p. 136).
In the cases that we are familiar with, there has been success
in growing dendritic structures, but nothing as remarkable
as the development of a new sensor as reported by Pask and
Beer. There have, on the other hand, been a number of inter-
esting results in the investigation of a comparable adaptive
self-organising dissipative structure (Nicolis and Prigogine,
1977) known as a ramified charge-transportation networks.

A ramified-charge-transportation-network (RCTN) con-
sists of a number of small steel spheres, placed in a petri
dish, and partially submerged in castor oil. A circular
grounded electrode runs around the periphery of the dish
and a high-voltage (≈ 20kV ) electrode sits above it. These
simple systems demonstrate remarkable self-organizing dy-

namics. Specifically, the spheres self-organize into tree-like
structures with topology that depends upon initial configu-
ration of the beads, and that can be radically different based
on minor changes in the initial setup (Jun and Hübler, 2005).
Once grown these structures display statistically robust net-
work features. For example, when the number of spheres is
kept roughly the same, the number of termini and branching
points will remain similar despite any topologically different
structures (Jun and Hübler, 2005).

Kondepudi et al. (2015) describe the dynamics of these
systems in terms of ‘energy-seeking’ and ‘self-healing’ be-
haviours. If a branch is broken, then the system will re-
store it. Further, the tree will continue moving its branches
around the available space to maximize the current con-
ducted by the structure. This can be considered a form of
self-preservation, as the flow of electricity is what allows the
system to persist in spite of its ordered, low-entropy state.
From these and other observations, Kondepudi et al. argue
that their overall behaviour can be considered as an end-
directed (i. e., purposeful) process (Kondepudi et al., 2015).

The enactive approach (Stewart et al., 2010; Thomp-
son, 2007) takes these kinds of precarious, self-maintaining
systems as a conceptual starting point for defining agents
(Barandiaran et al., 2009) and related phenomena, such as
intrinsic normativity and teleology (Barandiaran and Eg-
bert, 2013). But even if one does not subscribe to these ap-
proaches, the ability of these systems to adapt under seem-
ingly arbitrary requirements (e. g., detecting the difference
between these two frequencies of sound) makes these sys-
tems fascinating models for understanding the adaptability
of biological organisms.

It is worth emphasizing the open-endedness of the adapt-
ability of these systems. It would be difficult to argue that an
acidic solution of dissolved ferrous sulfate has the inherent
propensity to self-organize into a sound-discriminating ear,
and yet by applying an electric potential across such a solu-
tion in a particular way, Pask & Beer were able to cause it to
form into such a functional structure. This is rather remark-
able. Does it hint at a not yet fully understood mechanism
that might help us to understanding the remarkable open-
ended adaptation demonstrated in nature? Cariani (1993,
p. 20–21) suggests that by understanding the mechanism un-
derlying Pasks’ result, we may come to understand how to
create systems that can autonomous identify which features
of the environment they respond to in a way that is more
open-ended than that of conventional neural networks.

“[Conventional learning machines such as NN] im-
prove on their (initial) designs by altering their deci-
sion functions contingent upon evaluation of past per-
formance. But even with these machines, the designer
must foresee the basic categories of percepts (i.e. prim-
itive features) and actions which will be adequate to
solve the problem at hand [...] For real world tasks,
however, there is no such set of basic categories that is



defined beforehand, so that in addition to finding appro-
priate mappings there is also the problem of deciding
what the basic categories will be. Essentially, contem-
porary trainable machines have the freedom to adapt
within a set of percept and action categories, but they
do not have the freedom to modify those categories.
[...] Pask was specifically looking for a machine that
would create its own “relevance criteria”, one which
would find the observables that it needed to perform
a given task. The device [would develop] sensors to
choose, independent of the designer, those aspects of its
external environment to which it would react. Not only
would particular input-ouput combinations be chosen
but the categories of input and of output would be se-
lected by the device itself.”(Cariani, 1993, p. 21)

Some might argue that modern neural networks are capable
of selecting their own categorisation schemes, but even if
this is granted, they do not (yet) innovate a sensor that wasn’t
there before.

To summarize, the system studied by Pask and Beer (and
the related RCTN structures) are worthy of further study as
they (i) demonstrate unusual dynamics; (ii) are comparable
to the precarious adaptation of individual biological organ-
isms; and (iii) demonstrate an apparent open-ended ability
to adapt. In the next section, we introduce a computational
model of Pask and Beer’s system. In the following section,
we describe our efforts to use a reward-like variation of the
applied voltage so as to steer the growth of the dendritic
structures.

The reward function that our model optimises is consid-
erably simpler than the task that Pask and Beer set for their
system, but our model nevertheless demonstrates a plausi-
ble mechanism by which a physical system of this kind can
respond to reinforcement signal at all. Our model builds to
some extent on ideas presented in [cite Virgo and Harvey
2008], but the mechanism is much more physically realistic.

Model
We now present a model of electrochemical deposition. Us-
ing finite difference methods, we use a rectangular 256×128
lattice to simulate a two dimensional space 2 units wide by
1 unit tall. Each position on the lattice is considered to be
either a negatively-charged highly conductive solid or an in-
sulating liquid, Mi,j ∈ {S,L}. The electric potential, φ, is
calculated across this lattice by fixing the conductive solids
(i. e., treating them as boundary conditions) and then solving
the Dirichlet problem for the Laplace equation,

∇2φ = 0 (1)

by numerically integrating (using the forward-time centered
space method —see e. g., Recktenwald, 2004) the heat equa-
tion,

∂φ

∂t
= ∇2φ (2)

Figure 2: Example final state of a simulation trial, show-
ing the grown structure (top) and its surrounding electric
potential field (bottom).

until the system has come (close) to equilibrium i. e., un-
til ∀φ : |φn − φn−1| < 10−3, where the subscript n is the
current iteration index. When approximating the initial equi-
librium for any given run of the simulation, we increase ac-
curacy by reducing the tolerance by an order of magnitude,
i. e., ∀φ : |φn − φn−1| < 10−4.

The boundary conditions for the Dirichlet problem vary
between experiments. We describe this variation in detail
below, but in every case, there is a negatively charged con-
ducting solid with a fixed relative potential of 0. We call this
‘the structure’ and it grows and decays via simulated elec-
trochemical deposition and dissolution as described below.
In addition, each experiment also always includes a positive
boundary condition, that corresponds to an electrode with a
fixed relative positive charge.

Each iteration of our simulation begins by approximating
the electric-potential field equilibrium as described above.
We then determine how the conducting structure will grow
or decay. To do so, we identify I , a set of ‘interface cells’:
liquid locations with one or more solid locations in their von
Neumann neighbourhood.

I = {(i, j) : Mi,j = L ∧ ∃S ∈ {Mi−1,j ,Mi+1,j ,

Mi,j−1,Mi,j+1}}.
(3)

For each interface cell, we calculate the probability that it
will become part of the conducting structure. The probabil-
ity of these ‘constructive’ changes are proportional to φ of
the interface cell (as φ is the potential relative to the struc-
ture, which is proportional to electron flow at the interface).



To calculate this probability, use the following equation,

Pc = { 1

Z
(φi,j + ζ) : (i, j) ∈ I}, (4)

where 1
Z is a normalization factor selected such that the sum

of all of the probabilities is 1 and ζ is a parameter that scales
the relative influence of the voltage compared to entirely ran-
dom process—as ζ approaches infinity, the probabilities be-
come equal across the interface cells. The results of varying
ζ can be seen in Figure 3. Essentially, as ζ is increased,
the structure that grows loses its filamentous structure and
becomes less sensitive to φ-gradients, i. e., stops growing
toward high values of φ.

Destructive events, where one of the solid neighbours of
the interface cell becomes part of the liquid insulating ma-
terial are also possible. The probabilities of the destructive
events are a function of a(i, j), defined as the mean age (time
since creation) of the solid cells in the Moore neighbour-
hood of the interface cell. The assumption underlying this
distribution is that over time, the existing structure become
smoother and thus less likely to dissolve. This age-based
probabilities are calculated according to the following equa-
tion.

Pd = { 1

(1 + a(i, j))2
: (i, j) ∈ I}. (5)

In Pask and Beer’s experiments voltage was varied so as
to reward (i. e., stabilize / cause to grow) or punish (destabi-
lize / dissolve) the structure. In our model we similarly have
a reward parameter, r ∈ [0, 1] that biases the relative likeli-
hood of constructive vs. destructive events. The next event
thus selected from the following set:

P =

{
rp∑

Pc
: p ∈ Pc

}
∪
{

(1− r)p∑
Pd

: p ∈ Pd

}
. (6)

It is important to note that the reward function varies over
time (as a function of system state) but not over space. As we
shall see the structure tends to grow rather directly toward
regions of high φ, but it possible to counterdict this energy-
seeking behaviour by selectively rewarding certain types of
growth and punishing others by varying r.

Once the event is identified, the structure grows or de-
cays as appropriate, the electric potential equilibrium is re-
calculated, I is updated, the probabilities for the next event
are calculated etc., in a repeating iterative manner. Because
of the probabilistic selection of events, each iteration corre-
sponds to a different amount of time passage, specifically:
∆t is taken from an exponential distribution with the rate
parameter, λ, is the sum of the scaled but not normalized
probabilities, i. e.,: λ = r

∑
Pc + (r − 1)

∑
Pd.

The stochastic degradation of the structure means that it is
not uncommon for sections of the structure to become dis-
connected. When this happens, sections that are not con-
tiguous with the initial starting point of the structure (which

Figure 3: Increasing ζ results in fewer dendrites and re-
duced electrotaxis. A seed structure at (0, 0.5) responds to
a voltage gradient (φy=0 = 0, φy=1 = 1) in different ways de-
pending upon the relative influence of randomness and volt-
age as described by simulation parameter ζ.

is interpretable as the negative electrode) are assumed to fall
to a neutral potential and rapidly dissolve. This is simulated
by removing any solid structure cells that are not connected
to the initial starting position of the structure. This is not
a physically realistic aspect of our simulation, but rather a
simplification. In future work we may model disconnected
conducting elements in a more realistic manner. Finally, we
make it impossible for the first ‘seed’ cell of the structure to
dissolve.



Experiments & Results
We now evaluate different strategies for modulating the re-
ward signal, r. Each experimental reward strategy is a func-
tion of x?, the current mean horizontal position of the top-
most part of the structure. To calculate this value, we iden-
tify the top-most row of M that contains structure i∗ ≡
max i|Mi,j = S, and calculate the mean x of those posi-
tions within this row that contain structure, x? ≡ J̄ where
J ≡

{
2j
256 − 1|Mi∗,j = S

}
.

In each case the structure is seeded at the middle of the
space, close to the bottom (x, y) = (0, 16 ). A fixed voltage
φ = 1 electrode is simulated as spanning the top edge of
the area. To impose a gradient, the bottom edge is clamped
to a value of φ = 0 and the left and right boundaries are
also clamped as a linear gradient between the top and bottom
boundary conditions. Formally: φy=1 = 1; φy=0 = 0 and
φx=−1 = φx=1 = x. In all of the following experiments,
we simulate the growth of these structures until either the
structure touches the top electrode, or 25,000 iterations have
passed. For each of the following experiments, we fix ζ = 0.

Control Conditions. We will first describe the control
strategy where reward is fixed at r = 1. An example of
the type of structure that grows in the control condition can
be seen in Figure 2. The initial seed, located at (0, 16 ) grows
rapidly and rather directly to the positive electrode. The bot-
tom frame of Figure 4 shows the average density of 25 struc-
tures grown in these conditions. In every case, the trial ends
when the structure has grown to the top of the simulation,
and the horizontal location of the top of the structure is dis-
tributed approximately evenly around the centre of the arena
(see the bottom row of Figure 6).

Strategy 1: Simple Reward. The first experimental re-
ward strategy we consider is the modulation of r according
to the following simple linear function of x∗. Our goal here
is to to encourage the structure to grow to the right.

r = mx? + b (7)

It is not self-evident which values of parametersm and bwill
maximise our influence of the structure. Figure 5 shows the
conducted a systematic survey to investigate the influence of
these parameters. Of the values tested, the parameters that
maximised the mean rightward growth of the structures were
(m, b) = 5.06, 0.5 and it is these parameters that were used
to generate the ‘Simple Reward’ portions of Figures 4 and
6.

This simple strategy succeeds at influencing the growth
of the structure. Once the structure has grown a little bit to
the right of its initial location, r increases, and provided the
structure does not grow back to the left, r will remain high
enough for the structure to continue to grow. In other words,
after an initial growth to the right, further rightward growth

Figure 4: Superposition of the final states of 25 trials for
the best found parameterization of each indicated strat-
egy. Darker areas indicate locations where structure existed
at the end of a greater number of trials.

is unnecessary for the system to grow, and so it grows, at-
tracted by the higher values of φ close to the top of the arena.
Is it possible to do better?

Strategy 2: Constant Current. Pask generally refers to
current rather than voltage when describing this experiment,
and so there has been some speculation that they used a con-
stant current device that regulates voltage so that the total
current flowing between the two electrodes is constant (or
kept below some maximum)—see e. g. the description in
(Bird and Di Paolo, 2008, p. 201) . As conductive structure
grows between the electrodes, resistance decreases. If the
applied voltage were fixed, the current flowing through the
system would thus increase as the resistance dropped. The
constant current regulator is a simple feedback control de-
vice that regulates the applied voltage so that current is con-



Figure 5: Systematic survey of simple-reward parame-
ters. Values indicate the mean x? found for the indicated pa-
rameter values, with brighter values corresponding to greater
influence of growth.

stant. Essentially if the current is greater than a target value,
the applied voltage is decreased and vice-versa according to
negative feedback-like relationship similar to dV

dt = θ − A,
where V is the voltage, θ is the target current (selected by
Pask) and A is the current.

For our second experimental reward strategy we simu-
late a constant-current feedback mechanism so that current
is maintained at a target value (θ),

r =
1

2
+ θ −A, (8)

where A is the total current between the positive electrode
and the structure, which is calculated by summing the φ val-
ues at the interface,

A =
∑

(i,j)∈I

φi,j . (9)

The target current (θ) is then dynamically modulated ac-
cording to how far right the structure has grown (again ap-
proximated by x?), thus:

θ =
1

2
+m

(
x? − 1

2

)
. (10)

Once again it is not clear how to select a value for pa-
rameter m in this strategy. We experimented with m ∈
{10, 20, 30, 40, 50, 60}. The most effective value at max-
imising the mean x? was m = 40 maximised, and so we
used that parameter value to generate the data plotted for
this strategy in Figures 4 and 6. In these figures we can see
that the constant current strategy produces a distribution of
x? with a mean that is greater than the simple strategy, but
note that this is not a statistically significant increase (see
Table 1).

Simple Const. Curr. CC + Osc.
Control p < 0.001 p < 0.001 p < 0.001
Simple p < 0.141 p < 0.006

Const. Curr. p < 0.609

Table 1: Tukey’s test. This table indicates chance that vari-
ation between means of the data plotted in Figure 6 is due to
chance. Bold entries are considered statistically significant.

Strategy 3. Constant Current with Exploratory Oscil-
lations. While observing the simulations of the constant
current strategy, there was often a feeling of wishing that
the structure would ‘experiment’ more—i. e.,, try out differ-
ent random configurations and keep those that increase the
reward signal. To encourage this kind of exploration, we
added an externally driven oscillation to the reward signal to
produce our final strategy.

The reward function is the same as in the Constant Cur-
rent strategy, except that we update Equation 8 to include a
sinusoidal function of the current iteration of the simulation,
τ . It would be more appropriate to have this be a function of
time rather than iteration, and this will be an improvement
that we make in future work.

r =
1

2
+ θ −A+ n cos(2πτ/p), (11)

Once again, the control strategy includes free parame-
ters, and we used a systematic survey to search for those
that are more effective. Figure 7 show the results of this
survey. There is no clear trend among these parameters,
but they all perform well compared to the previous re-
ward strategies. We selected the best performing parameters
(n, p) = (0.1, 100) to generate the data plotted in Figures
4 and 6. The distribution of x? generated by this strategy
now significantly outperforms the simple reward mechanism
(p < 0.001—see Table 1).

Observations & Discussion
We have presented a new model for exploring the electro-
chemical deposition system investigated by Pask & Beer in
the 1950s. The model has helped us to understand how by
the selective rewarding of particular patterns of growth, it
is possible to influence or ‘steer’ the dissipative structures
that grow in these conditions. This is a potentially signifi-
cant result, because it suggests a novel, and simple, mech-
anism through which physical systems can respond to rein-
forcement signals, potentially producing complex, organised
structures as a consequence.

Our ability to guide the form of these structures in our
model is not absolute and it is interesting to consider the
source of any limitations and thus how they might be over-
come. One limitation may come from the energetic gra-
dients inherent in our simulation whereby the conducting
structure naturally grows up φ gradients. Each reward strat-
egy rewarded growth orthogonal to the φ gradients, but the



Figure 6: Comparison of best parameterization for each evaluated strategy. Each row indicates the x position of the
top-most structure element for 25 trials of indicated reward strategy.

structures all also (unsurprisingly) responded primarily to
the φ gradient by growing upwards. Decreasing the influ-
ence of the φ gradient might be expected to improve the
steer-ability. One way to do this would be to increase ζ.
In the physical experiment, this would correspond with de-
creasing the relative voltage between the electrodes. But de-
creasing the voltage excessively would mean that no depo-
sition would occur. A constant current mechanism might al-
low the voltage to remain high, while decreasing the ‘attrac-
tive force’ of the positive electrode. To speculate: the con-
stant current mechanism partially neutralizes the attractive-
ness of the φ gradient, as growth toward the positive elec-
trode reduces resistance, which increases the current, which
would cause the constant current mechanism to decrease the
applied voltage. If properly tuned, such a mechanism might
mean that the growth of the structure responds only to the re-
ward function (and not also to the φ gradient as is currently
the case). In this way, a well-designed reward mechanism
would ‘flatten’ the landscape of possible structures, facilitat-
ing the growth of those structures that maximise the reward
signal.

It is also interesting to consider this ‘flattening’ of the
search space in the context of genetic evolution, where the
search space of nucleotide sequences is essentially flat (i. e.,

Figure 7: Systematic survey of simple-reward parame-
ters. Values indicate the mean x? found for the indicated pa-
rameter values, with brighter values corresponding to greater
influence of growth.

there is little inherent cost for choosing a adenine or a gua-
nine), facilitating the ability of evolution to search the space
of polypeptide sequences unabated.

Comparison to evolution. In the introduction, we com-
pared random but selected growth of the structure to the
selection of random mutations in Darwinian evolution.
Metaphors like this are useful both for identifying similar-
ities between systems, and for highlighting differences. One
such difference that we noticed in the simulation is that when
a new branch begins to grow, it tends to grow in that same
direction for some time. This inertia-like effect may be due
to the tendency of new structures to grow into areas where
they are more exposed, and thus subject to higher voltage
and thus more likely to grow further—a kind of autocatalytic
growth. It may be that increasing the reward signal during
one of these may further accelerate this tendency allowing
for a more instructive or directive kind of reward mechanism
along the lines of “do more of that” rather than the post-hoc
reward, “what you just did was good, keep it”. Darwinian
evolution has no explicit inertia mechanism such as that just
described, but it is interesting to reverse the metaphor and
to consider that there are occasions when a new mutation
opens up a set of possible environmental interaction which
encourages further mutations.

Comparison to metabolism and biological individuality.
It is also interesting to consider one of these structures as a
model of a biological individual performing a metabolism-
based behaviour. The dendritic structure is a dissipative
structure that relies upon the dissipation of energy (the flow
of electricity) to persist. It reconfigures itself to amplify
or stabilize this flow of energy, and when conditions are
right, this adaptation can respond, not just to physical energy
gradients (control case), but to more complex requirements
(shown here in simulation and in Pask and Beer’s original
experiments). A number of other dissipative structures sim-
ilarly act so as to satisfy their own needs —see e. g. RCTN
discussed in introduction and motile oil-droplets (Hanczyc,
2011). These physical systems, like some bacteria (Egbert
et al., 2010) are responding essentially to their own rates of
self-construction in what is referred to as metabolism-based



behaviour, which can facilitate adaptation and evolution in
a number of ways (Egbert et al., 2012; Egbert and Pérez-
Mercader, 2016).

Origins of life. Pask’s electrochemical experiments seem
to demonstrate the emergence of functional components (for
example, the vibrating filaments in the ’ear’), without them
needing to be ‘designed in’ by a human engineer. One can
find examples of this in other places, such as the emergence
of new traits in evolution, or the emergence neurons that per-
form specific filtering operations when training a deep neu-
ral network, for example. But Pask’s case is remarkable be-
cause it occurs in such a simple physical system, purely as
the result of the physical processes of fluctuating growth and
decay of filaments, in response to a reward function.

Although there are some parallels with evolution, this
simple physical mechanism differs in that there is no need
for large, complex polymer molecules to be produced. If
evolution is not the only mechanism by which complex func-
tional structures can arise in the natural world, it becomes
possible that evolution as we know it is the result of a dy-
namical process, and not just its starting point. The emer-
gence of Paskian growth seems much easier than the emer-
gence of complex biomolecules, and perhaps mechanisms
resembling it played a role in steering the abiotic world on
its way to the emergence of biology.

Self-organizing steerable self-organizing systems In our
model there are a number of parameters that would influ-
ence the extent to which the self-organization is controllable
or ‘steerable’. That Pask and Beer were capable of find-
ing conditions suitable for steering the self-organization of
an ‘ear’ is remarkable. Instead of trying to identify effec-
tive parameter regimes directly, it may be more effective to
identify negative-feedback-like mechanisms that automati-
cally regulate parameter regimes so as to produce steerable
self-organization. One example of such as mechanism may
be the constant-current mechanism as described above.

Future work We have proposed a mechanism through
which a simple electrochemical system could plausibly re-
spond to a reward signal. However, the task we set our sys-
tem, of growing in a particular direction, was very simple in
comparison to the task of “growing an ear” that was achieved
by Pask and Beer. It will be important in future work to show
that this kind of system can solve more difficult tasks. It will
be equally important to build a better theoretical understand-
ing, in order to understand whether other kinds of physical
system can exhibit similar reinforcement learning behaviour.
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