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Integrating Autopoiesis and Behavior: An 

Exploration in Computational Chemo-ethology

Matthew D. Egbert, Ezequiel Di Paolo
CCNR, University of Sussex, Brighton

It has been argued that the difference between an autonomous entity and an agent is in the ability of

the latter to perform behaviors supplemental to processes of self-maintenance (autopoiesis). Theo-
ries have been proposed concerning how such behaviors might relate to autopoiesis, but so far, com-

putational models of autopoiesis have paid little attention to these relations. In this article we present

a new model designed to explore the relationship between mechanisms of autopoiesis and behavior.
We report on three clarifications of the theory provided by the model: (a) mechanisms of behavior can

be related to mechanisms of autopoiesis while remaining operationally distinct, (b) the organization of

an operationally closed system can change over time while remaining operationally closed, and (c)
behavior modulation based upon autopoietic efficacy has limitations that can be avoided through the

use of a partially decoupled behavioral system. Finally, we discuss questions that have surfaced dur-

ing examination of the model.

Keywords autopoiesis · agency · behavior · operational closure · chemo-ethology · artificial chemistry

1 Introduction: Behavior

Fundamental to the concept of agency is the notion of
the intrinsic origin of behavior. Agents act. Moreover,
natural agents are self-produced entities, as in the case
of living systems. Following this observation, it has
been proposed that self-production implies a form of
autonomy, which is a fundamental requirement for
agency (Di Paolo, 2005; Ruiz-Mirazo & Moreno, 2004).
Theory surrounding the idea of autopoiesis (Maturana
& Varela, 1980), the process of self-production of a
distinct entity, has furthered our understanding of
autonomy, but “bare” autopoiesis fails to fully address
behavior and explains only direct self-maintenance
(Di Paolo, 2005, 2009). The relation between autopoi-
esis and behavior is a subtle one. For instance, it has
been proposed that the mechanisms underlying the

production of behavior (regulated coupling with the
environment) have acquired complexity in the history
of life through a succession of “decouplings” from
underlying metabolic levels (Barandiaran & Moreno,
2008; Moreno & Etxeberria, 2005). These are com-
plex theoretical proposals that can be difficult to grasp
in the absence of a simple model of the ideas at work.
The model presented in this article has been devel-
oped to serve as such a demonstration. We hope that
by defining a specific system that has the organiza-
tional features described in the autopoietic literature,
we shall facilitate the study of autopoiesis and its rela-
tionship with behavior and relevance to agency.

Most computational models of autopoiesis dem-
onstrate only self-maintenance but no behavior. Gen-
erally the simulated autopoietic entities exist in an
environment which requires no organism-scale action

Copyright © 2009 International Society for Adaptive Behavior
(2009), Vol 17(5): 387–401.
DOI: 10.1177/1059712309343821

Correspondence to: Matthew Egbert, CCNR, University of Sussex, 
Brighton, BN1 9QJ, UK. E-mail: mde@matthewegbert.com. 
Tel.: +44 (0)1273 872948

 at Thuringer Universitats - und on January 4, 2013adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


388 Adaptive Behavior 17(5)

to continue to exist (e.g., McMullin, 2004; Varela,
Maturana, & Uribe, 1974). A few more recent models
have demonstrated agents performing a slightly
extended autopoiesis; extensions such as incorporating
a simple behavior such as osmotic crisis avoidance
(Ruiz-Mirazo & Mavelli, 2007) or chemotaxis (Suzuki
& Ikegami, 2009). In these cases, the added behaviors
are actually extensions of the mechanisms of autopoie-
sis—they are inseparable from the autopoiesis. To stop
the mechanism of behavior is to stop the mechanism of
autopoiesis. However, this is not the case for the major-
ity of behaviors observed in nature that stop and start
while autopoiesis continues.

This raises the question of how mechanisms of
behavior can be related to, but somewhat independent
of, the mechanism of autopoiesis. How can behavior be
integrated with and yet “decoupled” (Barandiaran &
Moreno, 2008; Moreno & Etxeberria, 2005) from mech-
anisms of autopoiesis?

In this article, we describe two tools of analysis
that we use to study this question. The first is the notion
of “operational closure” which we describe in detail in
the next section. The second is the computational
model of autopoiesis that we have developed to
study the relationship between autopoiesis and behav-
ior. This model does not demonstrate new behavior,
rather it demonstrates a different organization of
behavior relative to autopoiesis.

2 Operational Closure

Operational closure allows us to identify distinct sets
of interdependent processes. Operationally closed sets
are not completely independent of other processes, but
rather each member process both depends upon and
enables other processes within the set.1 The aim of
this definition is to provide a formal framework for
the notion of a self-sustaining system. Other expres-
sions for this concept can be found in Varela (1979),
Thompson (2007), Di Paolo (2009), and elsewhere.

Given a collection of processes �, a subset � of
those processes is operationally closed if, for every
constituent process P ∈ �, the following holds:

1. Another process P′ ∈ � is conditioned by process P
2. Process P is conditioned by another process

P′′ ∈ �. (P′ and P′′ can be one and the same proc-
ess.)

In a weak sense, a process A is conditioned by
another process B if alterations to B result in changes
in A. In a stronger sense, the relation can be under-
stood as one whereby B enables A: in this case, for A to
sustain itself as a process, B must be present. In both
situations the relation of conditioning captures the idea
of a process influencing another in a weaker, but also
less problematic sense, than that of causality.

With these criteria, given a set of processes and
their relationships of condition, it is possible to iden-
tify operationally closed networks of processes. As an
example, consider the hypothetical system depicted in
Figure 1. Each of processes a, b, c, and d depend upon
another process within the set and also enable another
process within the set. There is also a second, nested
operationally closed network, consisting of nodes b, c,
and d.

So, given a collection of processes and their inter-
dependencies, it is possible to identify operationally
closed sets. However, the situation becomes less well
defined when we recognize the dynamic nature of inter-
dependencies. Process A might depend upon process B
now, but not later (or vice versa). The point we wish to
underline here is that system interdependencies can
change, not only because the processes are dynamic
but also because relationships of contingency change.
It is already established that the realization of an oper-

Figure 1 A schematic of an operationally closed system
and its environment. Filled circles represent processes
and arrows represent dependencies. The processes with-
in the dashed circle fit the criteria for operational closure
and are thus part of an operationally closed system.
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ationally closed system can also change over time but,
in addition to these structural2 changes, the very rela-
tions between the constituent processes of an operation-
ally closed system may also vary in important ways. As
we shall show in this article, an operationally closed
system can recruit behavioral processes, while con-
serving operational closure. Perhaps understanding
this dynamic aspect of operational closure can help us
understand the relationship between autopoiesis and
behavior.

This concept of operational closure is related to,
but should not be confused with, the concept of clo-
sure as the property of mathematical groups nor with
the similar idea of closure of a set of molecular reac-
tions (Dittrich & di Fenizio, 2007). The latter specifies
that given a set of molecular species that react with
each other, there will be no new product out of these
reactions that does not already belong to this closed set.
Operational closure in the current context relates to the
organization of processes which may include physical,
chemical, mechanical and/or behavioral aspects. What
matters is that there is a relation of dependence between
these processes such that they form a closed network
and each process is precarious in the sense that it can-
not be sustained on its own and requires the presence
of the closed network.

3 Computational Chemo-ethology

Our model lies between two established approaches:
artificial chemistries (Dittrich, Ziegler, & Banzhaf,
2001) and computational neuroethology (Beer & Chiel,
2008). We define a set of abstract artificial chemicals
(reactants) and a set of rules of interaction and then
observe the resulting dynamics.

Among the dynamics that take place within our
model are a set of processes that maintain an autopoi-
etic system. This is similar to previous models of
autopoiesis in which an autopoietic unity emerges and
maintains itself. However, previous models served only
to demonstrate autopoiesis. These earlier models nei-
ther required nor performed any system-level behavior.
In contrast, our model has been developed to explore
the relationship between autopoiesis and behavior.
We have therefore constructed the reactants and rules
of interaction to produce an environment in which the
autopoiesis of the agent depends upon a behavior that
it performs.

The “computational neuroethology” approach, pro-
posed by Dave Cliff (1991) advocated the study of cog-
nition through the study of behavior of embedded,
embodied agents. We adopt the dynamical analysis and
behavioral analysis aspects of this approach, studying
not only the low-level chemical reactions but also the
agent-level behavior.

The computational neuroethology approach has
been largely associated with the evolutionary robotics
(ER) approach (Harvey, Di Paolo, Wood, Quinn, &
Tuci, 2005), where parameters of agents are optimized
by a genetic algorithm and the behavior and dynamics
of the agent are analyzed. However, it is very difficult
to study autopoiesis-based theories of autonomy and
agency using typical ER methodology because the
agents are not modeled as autopoietic; they neither
degrade nor self-maintain. In contrast, in our model,
the behavior generating mechanism and the autopoiesis
are modeled in the same (artificial chemical) domain.
This allows us to study not only the low-level and
agent-level processes, but how behavioral and autopoi-
etic processes interact.

4 Model

To explore the relationship between autopoiesis and
behavior, we have developed a model inspired by bio-
logical cells. A primary motivation in the construction
of this model was to produce a simulation that models
behavior and autopoiesis in a single, unified manner.
The autopoiesis and the chemotaxis of the agent are
both the result of the same type of dynamics, namely
the interactions between enzymes, a membrane, and a
high-energy resource. This makes it possible for us to
study the relationship between the two phenomena as
there is no “gap” between them in the model.

The model consists of a set of particulate enzymes
surrounded by a flexible membrane. These compo-
nents are simulated in a two-dimensional arena and
interact in such a way as to produce a mobile, autopoi-
etic cell-like entity: the agent (see Figure 2). Before
explaining the details of the model, we outline here
how the agent is both an autopoietic and a behaving
entity.

To show that the agent is autopoietic we must dem-
onstrate that it is composed of a set of reactions that are
operationally closed. Each process must be precarious
in the sense that it depends upon some other process
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in the network to continue. Each process must also
make possible at least one other process in the net-
work. This is most easily understood when we con-
sider the two processes of producing the membrane
and the autocatalysis of the enzymes.

First, let us consider the precariousness of these
processes—their tendency to stop in the absence of
each other. This precariousness is included in our
model by causing both the membrane and the enzymes
to degrade over time. The membrane continually shrinks
in size and the enzymes have a significant chance of
degrading into substrate particles at each iteration.
These processes of degradation can be countered in a
healthy agent by the production of newly catalyzed
enzymes. But, if the membrane becomes too small,
the random Brownian motion of the enzymes will
cause them to leave the agent at a rate greater than
their production and their population will fall to zero.

Thus, the membrane must be kept above a certain size
if new enzymes are to be produced. The agent has a
problem, however, in that as we have already men-
tioned, the membrane steadily shrinks. Fortunately for
the agent, certain enzymes (enzyme M and W) interact
with the membrane in a way that causes it to grow.
Here we have a cycle of dependence—the rate of
enzyme production depends upon the membrane being
sufficiently large and the maintenance of a large mem-
brane depends upon the ongoing production of
enzymes. This cyclical, reflexive dependence means
that the agent is operationally closed. As a boundary
maintaining, precarious, operationally closed system,
we consider the agent to be autopoietic.

The agent performs the simple behavior of moving
toward high concentrations of reactants (chemotaxis),
thus modulating its coupling with the environment. The
particular reactant that the agent seeks out is required

Figure 2 A time series of a healthy agent. To improve readability, only 10% of the enzymes are drawn. See text for a
detailed description of the processes involved. (a) Soon after the start of a trial, stochastic processes have already pro-
duced some small, random motion in parts of the membrane. (b) The agent has begun moving upwards. Note the asym-
metry in concentrations of M and W. Also note the increased size of the agent as a result of the high local levels of
resource, R. (c) After having visited most parts of the arena, the agent returns to the center where the R is now high
again relative to the agent’s previous location. Note the agent has shrunk because of the decrease in availability of R. (d)
The end of a typical run for a healthy agent.
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for its self-maintaining reactions. As such it can be
conceptualized as a food or resource, upon which the
agent depends. This reactant is named resource, R. In
each trial, a finite amount of it is placed in an arena,
and the behavior of a single agent is observed as it
consumes the resource.

We shall now describe in more detail the various
reactants and reactions within our model.

4.1 Resource

The agent exists in a 2-D, infinite environment initial-
ized with a patch of resource (R). Reactions 1a and 2a
in Table 1 show the use of R in the production of M, an
enzyme that is fundamentally important in the mainte-
nance of the membrane. Thus, the agent requires access
to R if it is to be able to produce sufficient M to coun-
teract its degradation. The finite quantity of R in the
environment implies a finite maximum possible life
span of the agent.

R does not diffuse. Its initial distribution is a
square of concentration 1,000 R/unit2, with dimensions
1200 × 1200 units (about three times the diameter of
an agent) with a border of lower concentration (500)
of width 200. This distribution of resource was
selected to be large enough to observe the agents
behavior in a healthy environment, but limited enough
to determine how the agent responds as it consumes R

and finds itself in an increasingly R impoverished
environment. As the agent consumes R in the produc-
tion of M, the distribution of R changes. This can be
seen in the background values of Figure 2 which indi-
cate higher concentrations of R in darker colors. No R
is added after the initialization of the simulation.

To be clear, the resource (R) should not be con-
fused with the substrate particles (S1 and S2) dis-
cussed below. Substrate particles are transformed into
enzymes in a process that consumes R. R can be
thought of as a high-energy molecule, similar to ATP,
that contributes energy to what would otherwise be an
endergonic reaction. Substrate particles are the mole-
cules that are transformed into the product.

4.2 Enzyme Properties and Chemical 
Reactions

There are four enzymes that are simulated as particles
in Brownian motion: M, W, T, and N. The membrane
is permeable to these enzymes. However, the enzymes
degrade immediately if outside of the membrane. This
is a simple way for us to capture a dependence of the
reactions upon the membrane that they maintain, and
it can be conceptualized as the membrane preventing
an enzyme toxin from entering the agent.

The Brownian motion of these enzymes is simu-
lated by modifying each enzyme’s two spatial coordi-
nates by values selected from a Gaussian distribution
(Mean = 0, SD = 20). This occurs every iteration.

In addition to the aforementioned enzymes, the
model includes substrate particles S1 and S2. These
are not enzymes as they do not catalyze reactions, but
rather are reactants that are transformed into products
by autocatalytic reactions (reactions 1a, 2a, 3a, and 4a
in Table 1). Note that we used two types of substrate.
S1 can be transformed into M and S2 can be trans-
formed into T and N. Our motivation for utilizing two
different types of substrate was to simplify the analy-
sis of the system. Specifically, to explore the relation-
ships between behavior and autopoiesis we damaged
parts of the behavioral mechanisms by removing T
and N from the simulation (explained below in the
section on lesion studies). We wanted to explore the
behavioral ramifications of these lesions experiments
without the additional complexity of indirect meta-
bolic competition between the autocatalysis of the
“behavioral” enzymes (T and N) and the “autopoietic”
enzymes (M and W). Using different substrates made

Table 1 Metabolic reactions. In the rate column, r repre-
sents the concentration of the resource (R). See main
text for further details

Rate Reactants Products

2 × 10–4 R M + S1 + R ⇒ M + M (1a)

0.15 M + M ⇒ M + S1 (1b)

2 × 10–4 R W + S1 + R ⇒ W + M (2a)

0.15 W + W ⇒ W + S1 (2b)

0.4 T + S2 ⇒ T + T (3a)

0.15 T + T ⇒ T + S2 (3b)

0.4 N + S2 ⇒ N + N (4a)

0.15 N + N ⇒ N + S2 (4b)

f(R, V) T + M ⇒ T + W (5)
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it possible for us to keep separate the behavioral and
metabolic ramifications of the lesions.

Note that each of the autocatalytic reactions can
run in reverse (reactions 1b, 2b, 3b, and 4b). The rela-
tive rates of reaction were selected to produce an equi-
librium for each reaction pair such that typically a
small number of substrate particles would be availa-
ble for the autocatalytic reactions at any given loca-
tion within the agent.

To simulate the enzyme–enzyme reactions
described in Table 1, every iteration, the arena is divided
up into a grid of “pockets,” each containing the enzymes
in that area. To avoid boundary effects, the offset of the
grid is varied randomly each iteration. For each enzyme
within each pocket a randomly selected reaction in
which it takes part is selected. If the relevant reactants
are present, there is a chance (indicated in the “Rate”
column of Table 1) that the reaction will occur, that is,
the reactants will be replaced by the products.

It should be noted that this method of simulating
enzyme–enzyme reactions means that, as in real chem-
istry, the reactant concentration affects the chance of a
reaction occurring during any iteration. For example,
if an area contains 1,000 T (and sufficient S2) the
chance of autocatalysis of T (reaction 3a) occurring
somewhere in that area is more likely than if it only
contained 10 T. This aspect, in conjunction with the
bidirectionality of the autocatalytic reactions, means
that if one of the autocatalytic enzymes reaches a high
concentration, the backward reaction (breakdown of
the autocatalyst into substrate) becomes more likely
than the forward reaction. In this way, the system does

not transform all substrate to enzymes, but instead
finds a balance consisting of a small population of
both types of substrate.

There is one last enzyme which we must intro-
duce. V is different from the other enzymes in that it is
assumed to have a very high rate of diffusion (relative
to its production and consumption). On this basis it is
modeled as becoming instantaneously distributed (i.e.,
of equal concentration) across the cell within each
time step. Computationally, this is most efficiently real-
ized by representing V with a single, cell wide, continu-
ously valued, concentration variable, rather than by
multiple discrete particles with specific positions which
have to be updated each iteration.

The concentration of V is increased by N when N
is in a higher concentration of R than V. Similarly, N
decreases the concentration of V when the concentra-
tion of R is lower than the concentration of V. Thus
the concentration of V is updated by each N, each iter-
ation, according to Equation 6 where c is the rate con-
stant (1 × 10–3) and Gn is the local concentration of R
at the location of the nth N enzyme. We assume that
this is the only reaction that affects the concentration
of V.

(6)

In addition to the autocatalytic reactions in Table 1,
there are two non-autocatalytic reactions (2a and 5).
Both of these reactions involve W. This enzyme can

Table 2 Summary of enzyme roles.

Enzyme Role

M Adds phospholipids to the membrane. Activates cilia to produce a local outward acceleration

W Adds phospholipids to the membrane. Activates cilia to produce a local inward acceleration

N Modifies V according to local concentration of R 

V Stores a representation of the mean quantity of resource experienced by the agent as a whole

T Transforms M into W when the local concentration of R is lower than the average (represented by 
the concentration of V)

S1 A substrate particle that can be transformed into M 

S2 A substrate particle that can be transformed into T or N 

dV
dt
------- c Gn V–( )

n
∑=
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be thought of as an alternative form of M in that it par-
ticipates in the same reactions as M and degrades to
the same substrate. We shall see below that the only
actual difference between these two enzymes is in
how they interact with the membrane; M tends to
cause a local motion of the cell away from the center
and W tends to cause the opposite motion. As we shall
see, these enzymes are fundamental to the chemotaxis
behavior. W is not autocatalytic, but instead catalyzes
the production of M. This is represented in reaction
2a. W is only produced by the transformation of M
into W by T. The rate of this reaction is determined by
the relative concentrations of R and V according to the
function f(R, V) = 0.9 · H(V – R) where H() is the unit
step function.

The rate of reaction 5 can be thought of as a com-
parison mechanism. Where the local concentration of
R is lower than the concentration of V, there is a high
probability of T transforming M into W. This mecha-
nism is inspired by and similar to the type of mecha-
nism hypothesized by Macnab and Koshland (1972)
to occur in chemotactic Salmonella typhimurium (for
a discussion of the chemotactic biochemical pathways
found in bacteria see: Blair, 1995; Falke, Bass, Butler,
Chervitz, & Danielson, 1997). The biochemical mech-
anism is slightly different from that in our simulation,
in that it compares a current concentration to informa-
tion about a previous concentration rather than com-
paring the concentration of two currently present
chemicals. However, as can be seen in the following
description given by Blair, the principal concept of a
differential reaction based upon a comparison of one
chemical concentration to another is clearly part of the
biological system.

The cell measures the concentration encountered during

the past second and compares it with that encountered dur-

ing the previous three or four seconds, basing decisions to

run or tumble on the difference. Bacterial chemotaxis thus

involves a simple, very short-term memory …[that]

allows the cell to make the temporal comparisons that

guide its choices to run or tumble. (Blair, 1995)

The reactions between V, R, T, M, W, and N
produce a comparison mechanism. Speaking anthro-
pomorphically, the agent keeps track of the average
concentration in its local area of R by varying the
concentration of V. It uses this value to transform M
into W when they are in areas of low concentration

of R relative to the average. This produces an asym-
metrical distribution of M and W that induces chem-
otaxis.

All non-substrate enzymes (excluding V) degrade
into substrate. Every iteration, there is a p = 0.001
chance that an enzyme will degrade into its substrate
(M degrade into S1 and the other non-substrate
enzymes degrade into S2). As mentioned above, if an
enzyme leaves the confines of the membrane, it is
immediately transformed into substrate (M or W into
S1 and the other non-substrate enzymes into S2).

4.3 Membrane Dynamics

The flexible membrane is modeled as a circle of mass-
points connected with linear and rotational springs.3

Each mass-point with its associated linear and rota-
tional spring represent one “membrane-section” (Fig-
ure 3). The rest-length of the linear springs and the
mass of the membrane-section is proportional to the
number of phospholipids (P) in the membrane-section.
The linear springs apply a force F = – kx to the mass-
point, where k is the spring constant and x is the dis-
tance that the spring has been displaced from its rest-
length. In this way, P influences the size and mechan-
ical properties of the membrane.

The rotational spring applies torque τ = –κθ (where
κ is the spring constant and θ is the rotational displace-
ment of the spring) to the associated mass-point and its
two neighbors. These forces can be thought of as a
crude simulation of membrane rigidity. The rest-angle
for each of the rotational springs is π (a straight line
with the mass point in the center).

The simulated membrane consists of 32 such
points connected in a circle. This number was selected
because it is relatively low, reducing computational
load, while high enough to produce a relatively smooth
membrane shape.

Each membrane-section degrades over time. This
degradation takes the form of a steady exponential
decrease in the number of phospholipids at each mem-
brane section over time. The particular rate of degra-
dation was selected to produce a system that degrades
rapidly in the absence of the system’s self-production,
but is stable when the agent is healthily self-produc-
ing. Left unchecked, the degradation of the membrane
causes the agent to eventually shrink to a size too
small to maintain the populations of enzymes. This is
the equivalent of death within our model.
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It is interesting that quantifying this size is non-
trivial. The viability (likelihood of survival) of the
agent is not only a matter of the size of the membrane,
but is the result of many interacting factors including the
number and location of various enzymes, the amount of
resource available, and so forth. We have begun
investigating how the viability of autopoietic systems
could be measured (Egbert, Di Paolo, & Barandiaran,
in press).

Diffusion of P occurs between neighboring mass
points according to Equation 7 where k is the rate of
diffusion (0.01) and Px represents the number of P at
mass point x. This rate of diffusion was selected as it
tends to maintain a roughly circular membrane.

(7)

Membrane-sections have inertia and are subjected
to a drag force proportional to the square of their
velocity. This force represents the drag that would be
present for a cell in a viscous medium.

Fdrag = –0.5v2 (8)

4.4 Membrane–Enzyme Reactions

Membrane particles do not prevent the motion of
enzymes. However, upon contact with the membrane
(considered to occur if the Brownian motion of an

enzyme causes it to cross a membrane section), M and
W contribute 185 phospholipids (P) to the membrane.
This number was found by experimentation to be suf-
ficient to counter the degradation of the membrane,
but not so high as to make the cell grow to an inappro-
priately large size. In addition to contributing phosphol-
ipids to the membrane, M particles briefly activate cilia
in the local region where they collide with the mem-
brane. This is modeled by applying a small force upon
the membrane point perpendicular to the tangent of
the surface of the membrane. M and W activate cilia
in different manner such that for M, the resulting force
is outwards (away from the center of the agent) and
for W the force is toward the center of the agent.
These interactions between enzymes and membrane
cause the deformations of the membrane as well as the
motion of the agent.

4.5 Initial Conditions

We initialized the model described above with a circu-
lar membrane of radius 300, placed in the center of a
square arena, with 10 particles each of T, N, and M
placed inside the membrane. Also, S1 and S2 particles
were randomly distributed around the arena at a den-
sity of 0.001 particles per unit square for each type.
As mentioned at the beginning of this section, the
arena is initialized with a square of R, of concentra-
tion 1.0, and with dimensions 1200 × 1200 units. This
square of R has a border of lower concentration (0.5)
R of width 200. Outside of this border, the concentra-
tion of R is zero.

Figure 3 Schematic of a membrane-section.

dPx

dt
--------- Px

2– 10 6–×=

k Px 1– Px–( ) Px 1+ Px–( )+( )+
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5 Analysis

Initially the agent remains momentarily stationary
(see Figure 2a). Soon however, the autocatalysis of
M begins to significantly decrease the local concentra-
tion of R. Brownian motion of the enzymes and their
stochastic and therefore slightly asymmetric reactions
with the membrane result in part of the agent extend-
ing into an area higher in concentration of R than
those areas that have been depleted by the agent. N
particles in this area increase the concentration of V.
Then, T transforms M into W in the parts of the agent
that are in the R-depleted area. The asymmetrical
distribution of M and W particles, their Brownian
motion, and their different effects upon collision with

the membrane result in a motion of the agent away
from the area low in concentration of R. Figure 2b
shows an agent after it has begun to move in this way.
The motion in this case is upwards but varies ran-
domly as can be seen in Figure 4.

As the agent moves, it continues to reduce the
local concentration of R. Areas that the agent has
occupied for a longer period of time are more depleted
of R. This causes areas toward the rear of the agent to
be lower in R which causes further production of W
which propagates the motion of the agent. In this way,
the agent moves around the arena in a relatively
directed manner. That is to say, once it starts moving
in a particular direction, it tends to continue in the
same direction.

Figure 4 Paths and health of the healthy (N/T) and lesioned agents. Paths are indicated for a single trial (left column)
and for 10 different trials (center column). The circles represent the location of the agent at the end of the trial and do not
represent agent size. Note the doubling back in the healthy agent and the avoidance of previously visited areas by the –/T
agent. The rightmost column indicates agent health (number of M particles) for the same 10 trials.
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This directed motion is a good demonstration of
how local molecular interactions can acquire a global
coherence, creating a spatial asymmetry that is the ena-
bling factor for the agent’s motion. Although the under-
lying mechanisms are quite different, local to global bi-
directional interactions have been found in other mini-
mal systems capable of generating self-movement in a
homogeneous spatial situation, for example, self-mov-
ing oil droplets studied by Hanczyc, Toyota, Ikegami,
Packard, and Sugawara (2007). In their physical sys-
tem and in our model, the conditions that cause move-
ment are maintained by the movement itself.

The lower right plot in Figure 4 shows the motion
of the center of a healthy agent during a typical run. It
moves around the arena, turning when it approaches
the end of the high-R concentration square, occasion-
ally doubling back and often returning to areas it has
been before. As can be seen in the left plot in Figure 5,
a healthy agent consumes all of the high-R-concentra-
tion areas at least briefly at different times during a
typical run.

6 Lesion Studies

To demonstrate the interactions between the mecha-
nisms of behavior and of autopoiesis, we performed
three lesion studies of our agent. By mechanism, we

mean a set of processes. These studies consisted of the
complete removal of either N or T or both. The
removal was performed after an initial settling period
of 1,000 iterations which was identified, by observing
non-lesioned trials, as sufficient time for the system
to “relax” from initial conditions. Both N and T are
only produced by autocatalysis. Thus, when lesioned
their population remains zero for the duration of the
trial.

Lesion studies are typically used to analyze the
dynamics of complex systems. It is no different with
their use here. Though we designed the system, it is
complex enough that this kind of analysis is useful for
understanding how different aspects of the system are
interacting.

The lesion experiments are identified by two-letter
acronyms that indicate which of these particles were
not transformed into substrate: N/T ≡ all enzymes
intact; –/T ≡ T are intact, but N is transformed into S2

at iteration 1000; –/– ≡ T and N are both transformed
into S2 at iteration 1000.

6.1 Behavior Determined Directly by 
Autopoiesis Efficacy is Limited

Let us first examine the lesioned agent –/–. In this
agent, the main behavior-producing enzymes have
been destroyed. The only reactions that remain active

Figure 5 R density plotted against time for healthy and lesioned (–/–) agents. Brighter values indicate that a larger por-
tion of the arena has the indicated R-concentration.
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in these agents are the autocatalysis of M, and the
interactions between M and the membrane.

The rightmost column of Figure 4 shows the
number of M particles in the simulation plotted
against time, each plot showing 10 trials. We use this
number as an approximation of health of the agent as
M particles must be produced for the membrane to
maintain sufficient size to enclose enzymes. It is clear
when comparing –/– to N/T that the lesioned entities
tend to have a shorter life-span. The longest surviv-
ing –/– agent dies shortly after iteration 35,000 whereas
almost all of the N/T agents survive past the end of the
trial (past 50,000 iterations). The mean survival-time of
–/– agents was 22,787 iterations (SD 8,486.1). As can
be seen in Figure 4 the –/– agent moves around the
arena, but in a less directed, more random walk than
the N/T agent.

The motion of the –/– agent is caused by the agent
depleting the local R concentration to levels where
further production of M becomes extremely unlikely.
In areas where R has been so reduced, M levels fall,
causing an asymmetrical distribution of M within the
agent, causing an asymmetry in the activation of cilia
which produces motion. This mechanism is reminis-
cent of one of the extensions of the original model of
autopoiesis made by Suzuki and Ikegami (2009), in
that lesioned agents only begin to move when part of
them slows its contribution to autopoiesis. That is to
say, the agents only move after they have come close
to “death,” that is, close to their viability boundary.
When in this fragile state, the random variation in, for
example, the particle trajectories can be sufficient to
inhibit motion for long enough as to cause death.

Unlike the non-lesioned agents, the chemotaxis of
–/– agents is modulated quite directly by the efficacy
of the autopoietic system. This direct relationship
between behavior and autopoietic viability is a fragile
organization in two ways. First, in a system such as –/–,
response to a dangerous phenomena requires a change
(decrease) in efficacy of the autopoietic system. This
is, by definition, a decrease in viability which corre-
lates with an increase in fragility of the agent. This
increase in fragility makes the agent less capable of
surviving various scenarios, for example, turning cor-
ners or enduring unlucky stochastic dynamics such as
a brief unlucky motion down the R-gradient. Second,
direct response to change in the efficacy of the
autopoietic system can trap the agent in a local maxi-
mum. This local maximum is surrounded by more

damaging situations, so the direct response would
keep the agent in the local maximum. However, under
certain circumstances, just on the other side of the
more dangerous situations there might be more advan-
tageous situations. An agent whose behavior is deter-
mined directly by the efficacy of the autopoietic system
would never find these superior conditions, but an
agent whose behavioral mechanisms are more decou-
pled from the autopoiesis might be capable of forging
out into a less safe environment in search of a superior
environment. It is interesting to consider this dynamic
while examining the paths taken by the agents (Fig-
ure 4). The N/T agents (with their partially decoupled
behavioral mechanism) clearly make better use of
resource, tending to feed on the higher resource areas
before consuming areas down to dangerous levels (see
Figure 5).

What we wish to highlight here is that a decou-
pled behavioral system, a system that is not as directly
determined by the efficacy of the autopoietic system,
is not subject to the same limitations. A behavioral
mechanism could, for example, continually move the
agent from one precarious situation to the next, and in
such a motion, produce an environment for the autopoi-
esis that is actually less precarious than any of the sit-
uations are on their own. This is a capability of a
decoupled behavioral mechanism that as far as we can
see is absent in bare autopoietic systems.

6.2 Mechanisms That Are Related But 
Distinct

Let us now examine the –/T agents. As a result of
lesioning the N enzymes, the concentration of V
becomes fixed. Speaking anthropomorphically, these
lesioned agents are incapable of changing their stand-
ards for what is good and what is bad. Without this abil-
ity, they move around the arena once, consuming some
R from each area and then lie still. At this stage inap-
propriately high value of V (compared to a healthy
agent) will cause T to change all M to W preventing
any asymmetry.

In the long term, these agents have a lower average
health and life span compared with the non-lesioned
agents (see right column in Figure 4), but in the short
term the autopoiesis continues. The same can be said
for the –/– agents. Furthermore, it is easy to imagine a
small change in the environment (e.g., if the R dif-
fused through the environment) that makes the motion
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of the agent unnecessary for the autopoiesis to con-
tinue. What we are driving at is that the behavioral
mechanism in all of these agents is related to autopoiesis
but also distinct. We have removed a component of the
behavioral mechanism without removing a component
of the autopoietic mechanism. The behavior affects the
autopoiesis indirectly rather than being directly part of
the autopoietic process. Because the behavioral mecha-
nisms are somewhat decoupled from the mechanisms of
autopoiesis, it is possible for the entity to continue to
exist without performing the behavior. This is, as far
as we know, unlike previous models of autopoiesis
(Suzuki & Ikegami, 2009) which if they were self-
maintaining were always performing their behavior
(e.g., chemotaxis).

This relationship between the mechanisms of
autopoiesis and behavior is asymmetrical. Without
autopoiesis there is no agent to perform the behavior but
the autopoiesis is not dependent (in the short term) upon
the behavior. In the case of our model, the chemotactic
mechanism depends upon the autopoietic mechanism
but the autopoietic mechanism can operate in the absence
of the chemotactic mechanism. This is not to say that the
behavior is irrelevant to the autopoiesis. The health plots
in Figure 4 clearly show the behavior tends to have an
effect on the duration of autopoiesis, but the relationship
is more indirect and more subject to change than the
dependence of the behavior upon autopoiesis.

To understand the relationships between these
mechanisms it is helpful to view the system from a

perspective of operational closure. This can be most
easily realized through study of Figure 6 which depicts
the interdependencies present within our model.4 The
clearest example of operational closure in our model is
the autopoietic system, which is highlighted by the
gray filled circle. For the M particles to be produced,
the membrane must be large enough and for the mem-
brane to be large enough, M particles must be made. A
membrane (physical boundary) is maintained by these
processes and therefore this collection of processes is
not only operationally closed but also autopoietic.

Just as the autocatalysis of M relies upon the
membrane encircling sufficient substrate particles, so
does the autocatalysis of T and N. These relationships
are indicated by the arrows from “Membrane Size” to
“Production of T” and “Production of N.” The T and
N are integral to the reactions that cause chemotaxis.
But what is less clear is the relevance of chemotaxis to
the production of M. This depends upon the environ-
ment in which the agent exists. For example, we can
imagine that in an environment in which the consump-
tion of R is insignificant compared to the replenish-
ment of R, then no motion is necessary for the agent.
It can remain more or less stationary, existing indefi-
nitely. If, however, the agent depletes R in its local
environment, if it is to survive it must move to another
area to find more R. Because this dependence changes
depending upon the environment in which the agent
exists, we have depicted this dependence as a dashed
arrow.5 We wish to draw attention to these organiza-

Figure 6 Interdependencies within our model. Arrows represent interdependencies as in Figure 1.
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tional relationships in order to highlight the non-intui-
tive notion that the operationally closed system can
change organization over time. In this case, depending
upon the environmental conditions, the operationally
closed system can include only the autopoietic cycle
(the filled circle) or it can include both the autopoietic
cycle and the behavioral mechanisms (dashed circle).

Finally, it is worth briefly considering a hypothet-
ical alternative system organization. What if the pro-
duction of T and N depended upon the chemotaxis?
This would produce two new operationally closed
loops (one consisting of “Production of T” and “Chem-
otaxis,” the other consisting of “Production of N” and
“Chemotaxis”). These loops have their own optimal
operating conditions and it would be possible for such
behavioral loops to have norms different or even in
conflict with the norms of the primary autopoietic sys-
tem (some discussion of this can be found in DiPaolo,
2009). There is not space to discuss this further here,
but we intend to return to this idea of behavior in con-
flict with autopoiesis in future explorations of this
model.

7 Conclusions

This article reports on a new computational model that
enables us to explore the relationships between mech-
anisms of behavior and autopoiesis. The model, which
incorporates aspects of computational artificial chem-
istry and neuroethology has helped us examine the
idea of decoupling in the context of mechanisms of
autopoiesis and behavior. Specifically, three clarifica-
tions have been made through analysis of the model.

First, behavior modulation based upon autopoietic
efficacy has limitations that can be avoided through the
use of a partially decoupled behavioral system. An
agent whose behavioral mechanism is based on its
autopoietic efficacy must approach its “viability bound-
ary,” becoming more fragile before it can respond.
Furthermore, direct sensitivity to autopoietic rates can
trap an agent in local viability maxima that are not
optimal solutions in the long term. These limitations
can be avoided by having a behavioral mechanism
that is not as directly modulated by autopoietic proc-
esses.

Second, mechanisms of behavior can be related to
mechanisms of autopoiesis while remaining opera-
tionally distinct. We have been able to make more

explicit the idea of decoupling as a form of changing
dependence and independence within operationally
closed networks. This relationship of related but inde-
pendent is built upon the idea that operationally closed
systems change over time.

Third, the organization of an operationally closed
system can change over time while remaining opera-
tionally closed. In this context of dynamic operational
closure, behavioral mechanisms are those mechanisms
that are not always in operation and can, depending
upon environmental conditions, affect viability. In con-
trast, autopoietic mechanisms are those mechanisms
that are always required, extenuating circumstances
aside, to occur if the agent is to continue to exist.

The simplicity afforded by our model (compared
with biological systems) has enabled us to see more
clearly how behavioral and autopoietic processes can
operate over the same physical components and have
relations of dependence that can change depending
upon the situation.

This relation between behavior and self-produc-
tion reveals an interesting possibility for operationally
closed systems, one that has rarely been made explicit
in theoretical terms. Namely, an identity can be main-
tained while the network of interdependencies changes
over time. While the metabolic loop remains always
active and unaltered in its closure, the dependence of
some of its processes and inner relations on the effi-
cacy of behavior is an organizational, not merely a
structural, change to the system. We suspect that this
possibility of entering temporarily different modes of
system organization can play an essential role in devel-
oping the theory of autopoiesis toward an account of
biological transformations of organization (e.g., from
embryo to adult, or the appearance of novelty across
generations), which is at the moment one of its blind-
spots.

To summarize, this model has allowed us to see
the relationship between self-production and behav-
ior-production in a more concrete manner. We intend
to continue to further explore how simultaneous
mechanisms, operating over the same physical space
can interact to produce the cognitive abilities that we
associate with the notion of agency. Future study may
include increasing the variety of environmental condi-
tions within the model. For example, one area of the
arena might contain non-diffusing R, while another
area contains diffusing R. In these different environ-
ments, the dependence of the autopoiesis upon the
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chemotactic behavior depends upon the location of
the agent. This would allow us to study the changing
dependency and operational closure in one continuous
system. In the more distant future it would be interesting
to implement an evolutionary process in this environ-
ment to see what the long term trends would be in terms
of the relationship between behavioral and autopoietic
mechanisms.

Notes

1 Developing the formal definitions of process, dependence
and enabling is outside of the scope of this article. For the
present discussion, it suffices to resort to intuitive under-
standing of the terms. This is an area in need of attention
(see Virgo, Egbert, & Froese, in press).

2 In the autopoietic literature organization and structure
have significantly different connotations. The organiza-
tion of a system is the way the different parts of the system
relate to each other and the structure is what the different
parts of the system are made out of. The structure of a mem-
brane (the molecules out of which it is made) changes over
time, but the organization (e.g., the membranes ability to
maintain high concentrations of reactants within the cell)
can not change without the system failing.

3 The model we have used for the membrane is more compli-
cated than is strictly necessary. We developed this mass–
spring model with future extensions in mind.

4 It is worth mentioning that this Figure could be drawn at
different scales. That is to say we can describe the rela-
tionships of dependence at different levels of detail (e.g.,
we chose not to include the intermediate process of the
creation of W by T as it is not important to our argument.
It suffices to describe chemotaxis as being dependent upon
the production of T).

5 It is also possible to imagine contrived scenarios in which
the other interdependencies cease to exist. In this sense the
dependence of continued enzyme production upon chemo-
taxis is not unique. However, we have chosen to highlight
the changeability of this dependence as an example of
how certain natural organizationally closed systems can
be formed and cease to exist, as different natural environ-
mental conditions are encountered.
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