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Abstract. We present a variation on a classic evolutionary robotics ex-
periment using an unorthodox controller model, a Node-Based Sensori-
motor Map (NB-SMM) — a stateless, deterministic, continuous-time con-
troller which directly maps an animat’s sensorimotor state to a change-
in-motor-state command. Our investigation illustrates how such a simple
model can be used in an evolutionary robotics context in place of a more
typical neural network model, but offers its own set of practical and the-
oretical points of difference. Previous work has likened the role of the
internal state of a recurrent neural network to the role of the brain in
the brain-body-environment system. It is often assumed that in order to
produce adaptive behaviour, our control systems require some internal
state which modulates the dynamics of the animat’s sensorimotor loop.
Our results challenge this received view by demonstrating that a stateless
controller can also perform tasks that may be considered cognitive.

1 Introduction

A key benefit of the evolutionary robotics approach is the ability to strip away
all but the most essential requirements of a model of cognitive behaviour. Seth’s
animats, for example, illustrated a counterpoint to the assumption that an in-
ternal arbitration mechanism was required for action selection, by presenting a
model with only a “set of independent sensorimotor links, and the influence of
some internal state” [7]. What exactly is the role and nature of such an internal
state though? How does it relate to the role of knowledge and representation
in sensorimotor perception [8]? One way to clarify this is to investigate models
which have no internal state whatsoever and evaluate their capabilities. To this
end, we use a stateless controller model to revisit a previous investigation of a
minimal categorical perception behaviour [3].

Node-Based Sensorimotor maps (NB-SMM) are a class of continuous-time
controller models which operate by deterministically mapping the instantaneous
sensorimotor state of an animat to a change-in-motor state output. The defining
feature of an NB-SMM is that the parameters of the mapping function are de-
termined by a limited number of nodes in a sensorimotor space. A benefit of the
node-based approach is that the process of generating and adjusting these nodes
can be altered to allow targeted investigation of particular aspects of cognitive
behaviour. One approach is for nodes to be generated dynamically while the
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controlled animat goes about its activity. These dynamic NB-SMMs are stateful
— the parameters of the nodes and mapping function change in response to the
model’s internal state. Alternatively, nodes may be placed through some optimi-
sation process while the animat is offline. These static NB-SMMs are stateless
and always give the same output for a particular sensorimotor input. Varieties of
dynamic NB-SMM models have been used to explore habit-based behaviour [5,
4] and goal-oriented behaviour [10]. Our previous work with a static NB-SMM
enumerated all possible configurations of 1- and 2-node NB-SMM’s and demon-
strated that even those minimal systems provided a foundation of functional
behaviour [9].

In this investigation, we present an example of how a simple, static NB-
SMM can be used in the context of an evolutionary robotics-style experiment.
We then compare the behaviour produced by the NB-SMM-controlled animats
with animats controlled by stateful continuous-time recurrent neural networks
(CTRNNSs) evolved to perform the same behaviour.

2 Model

2.1 NB-SMM

We use the same kind of NB-SMM that we defined in [9], which in turn uses the
same functions to determine a change-in-motor-state output as a related iterant
deformable sensorimotor medium model [5,4].

An NB-SMM generates a map in sensorimotor space, which is a construct
which defines all possible sensory and motor states of an animat, with each
spatial dimension representing a single motor or sensor variable of the animat.
This map defines a change-in-motor-state output for every possible sensorimotor
state, and thus the controller operates by continuously outputting new change-
in-motor-state commands as the animat’s sensorimotor state changes. Crucially,
the controller has no internal state which modulates over time the relationship
between sensorimotor state and output. In other words, the only relevant prop-
erty in determining the output behaviour at any moment is the immediate state
of the simulated “body”. Such a system is in contrast to a stateful controller
such as a CTRNN-based system, in which the state of internal hidden neurons
typically influence the relationship between input and output.

The mapping itself is defined in terms of nodes which are localized in senso-
rimotor space. Each node has a position in sensorimotor space, around which its
influence is strongest, and a velocity component which determines the direction
and speed of its influence on the change-in-motor-state of the controlled animat."
Finally each node has a weight which determines its relative influence compared
to other nodes. Thus each node can be expressed as a tuple N = (7, ¥, w)

This particular architecture has been chosen for the sake of consistency with
related work, but the motivation for its specific design principles is of limited

! Note that this “velocity” of the node does not refer to a rate at which the node moves
through sensorimotor space — its position is fixed.
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relevance here — further discussion and explanation of the following functions
may be found in [5] and [9]. The key point is that the nodes are used determine
the mapping via the following function:
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In these functions, Ny is the position in SM-space for each node, Ny is the
velocity for each node, N,, is the weight of the node, and 7is the animat’s current
position in SM-space. The superscript ¢ in Equation 1 indicates taking only the
motor component of the vector. The fixed parameters k; and k, respectively
scale the range of influence of all nodes in SM-space and the influence of node
weight. 7 scales the output relative to the animat’s velocity.

2.2 Experiment setup

The NB-SMMs are evolved to guide m
a animat through a task involving ¢ >
distinguishing between two curves, \0/
one classed as ‘narrow” and one as S

“wide”. The animat must demonstrate
its ability to distinguish the curves’
widths by consistently stopping at the
peak of the designated target curve
(i.e. always atop the narrow curve or
always atop wide). The challenge to
this task is that the sensor only detects the distance to the point of the curve
immediately in front of it, and thus a particular sensory state is associated with
multiple points in the environment, over both curves. The animat must there-
fore employ an exploratory strategy over time in order to distinguish between
the objects, which provides an interesting challenge for a stateless controller.

The experimental setup is illustrated in Figure 1. The environment consists
of a animat in a two-dimensional arena with a stimulus in the shape of two
bell-shaped curves. The arena has a width and height of size 1 and periodic
boundaries on the horizontal axis. The stimulus a shape such that

Fig. 1. [llustration of the task environment.
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y = max (eXp <(x 201;”)> ; €Xp <(x ;ggw) )) (5)

where p, and p, are the x-positions of the centers of the narrower and
wider curves and +o, and +o0,, are the maxima of the function’s derivative for
the narrower and wider curves. During the evolutionary process o, = 0.03 and
0w = 0.08, but evolved animats are subsequently exposed to a range of widths. In
each trial p,, and p,, are set randomly, with a minimum distance of 0.3 between
the two to avoid significant overlap.

In each trial the animat is initially positioned with its sensor at y = 1 and
with a random z-position. It can move along the z-axis with a velocity of v units
per second such that —0.25 < v < 0.25. Its sensor is activated as the distance d
between it and the shape at the point directly below the animat, such that its
state is

s=1-d (6)

This means that the animat’s sensor state is at its maximum when it is at
exactly the peak of either of the curves. The animat is controlled by an NB-
SMM with a two-dimensional sensorimotor space corresponding to the single
motor and single sensor. The motor state p of the animat corresponds to its
velocity but is scaled such that its value is on the interval [0,1], i.e. u = 0.5
corresponds to v = 0.

The parameters of the NB-SMM are defined through a genome which is
optimised via a microbial genetic algorithm [6] with a population size of 100
evaluated over 220 generations with a deme size (a property specific to the
microbial GA variant) of 15. The NB-SMM has 11 nodes, and the position,
velocity, and weight of each node are defined in the evolutionary genome for a
total of 5 genes per node. Additionally the kg and k., parameters are also defined
in the genome. The 7 parameter is fixed at 7 = 10. This requires a genome with
511 + 2 = 57 genes to be evolved, where each gene is a 64-bit float from the
range [0,1). The genes for k; and k, are scaled so that the parameter values
are 2 < kg < 20 and 0.01 < k, < 0.05, and node weights are scaled so that
—300 < w < 600. Position and velocity genes do not need scaling.

‘We present results for variations of the task where either the wide or narrow
curve is the one that should be approached (hereafter the approach-curve) while
the other is avoided (avoid-curve), and we refer to these different tasks as the
wide-approach and narrow-approach variants. Each genome is tested in 108 trials
lasting for 40 seconds, with the initial conditions of animat starting position
and velocity selected systematically across their ranges. Trials are evaluated
with a fitness function which calculates the root-mean-square error between the
animat’s position and the peak of the approach curve (either p,, or p,), averaged
over the last eight seconds of each trial, and then averaged over those 108 per-trial
fitnesses. For the last 20 generations, the fitness function is adjusted such that the
root-mean-square error is also multiplied by the animat’s velocity. Simulations
were run using Euler integration with a step size of 0.01.
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2.3 CTRNN comparison

We compare the results of the NB-SMM-controlled animats with some that are
controlled by minimal CTRNNs evolved to solve the same task. An explanation
of CTRNNSs and their use may be found in [1]. Our CTRNNs are 2-neuron net-
works where the first neuron receives an input and the second neuron’s state is
mapped to determine the animat’s motor state. The first neuron is connected
to itself, and the second is connected to itself and to the first. The input is the
animat’s absolute sensor value. Note that differs from the version of the exper-
iment presented in [3] where the CTRNN input is the time-derivative of the
sensor. Ranges for biases, connection weights, and time constants are [—32, 32],
[—16,16], and [0.5, 10] respectively. Apart from the use of CTRNNSs, the exper-
imental setup is consistent with that used with the NB-SMMs, however as the
optimisation process for these experiments proved more difficult, we doubled the
population and deme sizes, and the number of generations.

3 Results

3.1 NB-SMM results

An effective solution (fitness less than 0.008) was found in all 10 runs for each
task variant. Wide-approach variants consistently had a superior fitness to the
narrow-approach variants (0.007 versus 0.004 average fitness). All evolved NB-
SMM-controlled animats display a more or less consistent behavioural strategy:
When approaching either curve from one particular side (either left or right) the
animat will turn back before reaching the peak, and when approaching from the
other side it will pass over the peak of the avoid curve or come to stop at the
peak of the approach curve. Figures 2 and 3 present visualisations of an example
solution’s sensorimotor map and the phase spaces of the coupled system of the
animat and its environment. Specific trajectories are highlighted on each figure
for a single trial beginning from the initial conditions (z = 0.9, = 0.75). In
the sensorimotor trajectories, there are several overlapping points from which
the trajectory progresses in different ways from a single state. This is possible
because there are multiple states in the coupled system which produce the same
sensorimotor state — when the animat is in particular positions over both the
wide and narrow curve. The challenge of the task of course is that the animat
must respond to these different environmental contexts appropriately, despite
having a controller which reacts only to the sensorimotor state.

How do the evolved NB-SMMs solve the task? Essentially, they exploit the
regularity that for any given non-zero motor state, the rate of change for the
sensor state is greater as the animat passes over the narrow curve compared to
the wide curve. In Figure 2 this can be seen occurring after points 1. At each
1) we have two instances where the animat is in the same sensorimotor state,
but is interacting with different curves. Furthermore the animat is in a similar
position relative to each peak (i.e. to left of both in Figure 2A, and to the right
of both in 2B). In other words, the divergence of the two trajectories from state
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Fig. 2. Visualisations of the sensorimotor maps generated by two example NB-SMMs.
For each, a sensorimotor trajectory is shown for a single trial in which the animat
performs the task correctly, and a time series plot of the animats’ position during each
is shown below. These same trajectories are also highlighted in Figure 3 in the coupled
systems’ phase spaces. 1, k, A, B are discussed in the text. Note that the dark green
trajectory indicates that the animat is nearer to the narrow curve than the wide.

1 onwards is entirely a consequence of the way in which the animat interacts
with different-width curves. Contrast this to point x on Figure 2B, where the
two segments of the trajectory intersect again, but the animat is on the left side
of the narrow peak but on the right side of the wide peak, meaning that the
difference in sensorimotor response following & is primarily due to the contrast
between moving toward a curve’s peak as opposed to moving away.

In the figures, the part of the trajectory associated with the approach-curve
continues to approach the stable point after v, never intersecting with the avoid
part again in the same way. Since the controller is stateless, it follows that the
process of discriminating narrow and wide curves occurs entirely after point .
This is not to say that all preceding behaviour is redundant, nor the other parts
of the map, which do not directly influence this aspect of the behaviour. We
find that all evolved animats display a general strategy in which the animat
establishes a particular sensorimotor state, (mostly) regardless of initial condi-
tions, and from that state takes advantage of the different environmental sensory
response while passing over the different curves. This can be seen in Figure 3,
where trajectories from many initial conditions rapidly tend to converge.

As for the process of discriminating between the curves after ¢, how does this
work within the constraints of an NB-SMM, which by definition always gives the

same motor output for a particular sensorimotor state? This process is illustrated

by the annotated points in Figure 2. At a given point, % is consistent regardless
of the environmental context, but % varies depending on the environmental

context. Therefore even as the animat makes the same motor actions, so long as
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Fig. 3. Many trajectories in the phase space of the entire coupled system. Red trajec-
tories indicate that the trajectory approaches a state which corresponds with successful
task performance, while blue indicates a failure. The green trajectories match those in
Figure 2.

%@‘ # 0, from a particular sensorimotor state i, a trajectory over a fixed time
interval will arrive at different points in sensorimotor space, A and B, depending
on the shape of the curve. Further, if the mapping is such that the animat always
reaches state 1, or at least approximates it, then it is guaranteed that the animat
will only reach state A when it is over the narrow curve, and state B when it is
over the wide curve. Ultimately, the NB-SMM’s mapping can take advantage of
this by producing different motor activity for states A and B. As appropriate,
one of these states can lead to the end of the approach part of the behaviour
(i.e. come to a stop), while the other can lead to the avoid part of the behaviour
(i.e. move away from the current curve). To take advantage of these regularities,
a sensorimotor map that can solve this task must have two parts: One part
of the mapping ensures that there is a region of sensorimotor space such that
when the animat’s sm-state is in that region it will move to stop at the peak of
the currently sensed curve; The rest of the mapping ensures that the animat’s
sensorimotor state will only enter that region in the correct context for the given
task. As seen in Figure 3, there is a caveat to this solution, in which the animat
will fail to solve the task if it begins with initial conditions which violate the
aforementioned guarantee about states A and B.

Although the general strategy is consistent, we observe a fundamental dif-
ference between the two task variants in the behaviour which occurs after .
In the wide-approach case, the animat immediately decelerates toward an os-
cillation around v = 0. In the narrow-approach case however, the animat first
accelerates before decelerating. These differences can be seen in Figure 2 and are
consistent across all evolved solutions. This highlights the peculiarities of the re-
lationship between sensorimotor maps and the specific dynamics of each task
variant. Why does this behavioural distinction develop? As we have established,
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the total change in motor state will always be greater in the case of passing
over the wider curve compared to passing the narrower. In the wide-approach
variation, this means that an effective animat can simply decelerate from its v
state until it approaches v = 0 around the same moment that it reaches the peak
of the curve. The same map will cause the animat to pass over the top of the
narrow curve before it has reached v = 0, as occurs in Figure 2B. In contrast,
the narrow-approach variation uses an acceleration to distinguish the curves.
When it passes over the narrow curve it accelerates slightly, but then deceler-
ates as it passes over the top and eventually reverses before coming to a stop.
When the same animat passes over the wide curve however, it accelerates more,
such that it avoids the region of sensorimotor state where the mapping causes
it to decelerate and double back. That the narrow-approach variation requires
both an acceleration and a deceleration suggests that there is an added degree
of complexity to the narrow-approach variation compared to the wide-approach.

3.2 Categorical Perception

The NB-SMMs are only exposed to a particular pair of curve widths during evo-
lution. However the evolved animats also display an ability to respond to various
pairings of widths, tested between 0.01 < oy < 0.065 and 0.05 < oy < 0.12.
This ability produces emergent categories of “wide” and “narrow” curves defined
in terms of how the animats respond to each. The boundaries of these categories
are not objective, but rather they vary from animat to animat depending on the
precise dynamics of each map. Figure 4 illustrate the fitness of narrow-approach
and wide-approach animats across a range of width pairings. We can see that
there are thresholds within which the animat’s task performance is near perfect,
but beyond those thresholds there are regions where the animat’s fitness is lower

A: Narrow-a B: Wide-approach
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Fig. 4. Frequency with which the animat ends a trial above the approach-curve’s peak
for different pairings of curve. Each pairing is systematically evaluated across 900 dif-
ferent initial conditions.
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but not indicative of complete task-failure. There are two factors which cause
the fitness of the animat to drop off past those limits. Firstly, the set of initial
conditions which cause the animat to incorrectly stop atop the avoid curve be-
comes larger. This is because, as the widths become more similar, the deviation
between trajectories after 1) become less pronounced, and this means that more
initial states fall within the conditions which the NB-SMM has implicitly es-
tablished as states which should only be reached when over the approach-curve.
Eventually the avoid curve becomes so similar to the original approach curve
that the animat will always stop at the avoid peak if it encounters it first. In the
narrow-approach variant, this limit establishes the lower bound of “wide” curves,
and similar establishes the upper bound of “narrow” in the wide-approach vari-
ant. Secondly, when the approach curve width breaches its own limit, the animat
will no longer stop at the correct peak. However it will typically still move rela-
tively slowly near the peak and therefore spend a larger amount of time in that
area. Therefore depending on initial conditions, the animat is still likely to be
near the peak of the approach curve at the end of the trial, but may also have
moved away again. These two factors leads to the fuzziness of the success rates
outside of the yellow regions of the plot which describe correct behaviour.

We can see that in the example narrow-approach case, the upper limit for a
curve to be considered “narrow” is around o, = 0.051, whereas the lower bound
for a “wide” curve is around o,, = 0.06. When curves are in between those limits,
the animat’s behaviour is heavily dependant on initial conditions. Similarly for
the wide-approach example, the upper and lower bounds are o, = 0.045 and
o, = 0.056 respectively.

3.3 CTRNN results

Figure 5 shows plots equivalent to Figure 3 for two examples of CTRNN-controlled
animats, illustrating the behaviour in terms of the animat’s position and veloc-
ity. For the wide-approach variant, a two-node CTRNN which performed with
comparable fitness to the NB-SMM was found consistently. The general strat-
egy of the CTRNN-controlled animats align with that of the NB-SMM ver-
sion. That is, it approaches from one side and decelerates as it passes over each
curve, such that the deceleration brings it to a stop over the wide curve but
not the narrow. The overall pattern of behaviour is much simpler than that of
the NB-SMM-controlled animat, with the animat rapidly achieving a maximum
leftward-velocity from most initial conditions.

The narrow-approach variant failed to converge on an effective solution in 10
runs. This failure is consistent with what we observed in the NB-SMM animats
regarding the need for both an acceleration and deceleration in the performance
of the of the narrow curve variant — resulting in a slightly more complex task —
and the relative simplicity of the function approximated by the CTRNN. This
result provides a contrast to that in [3], in which a time-derivative of the sensor
state is used as the input to a CTRNN with the same topology, producing an
effective solution with an oscillatory behaviour.
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Fig. 5. For two evolved CTRNNSs, trajectories of the same variables as plotted in Figure
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first neuron, which is not plotted here. In the narrow-approach case, the evolutionary
algorithm has failed to find an effective solution.

For the wide-approach variant,
Figure 6 illustrates the performance
over various width pairs. Unlike the
NB-SMM version, there is essentially
no gap between the upper bound
of the perceived “narrow” curve and
lower bound of the “wide” curve.

4 Discussion

At first glance, it may seem surprising
that the NB-SMM-controlled animats
are capable of performing the task. On
the one hand, we have a task in which
the immediate sensorimotor informa-
tion that is available to the animat is
insufficient to distinguish between the
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Fig. 6. Fitness results for the CTRNN
wide-approach task, equivalent to Figure 4.

widths of the curve. On the other, we have a reactive controller model whose
output is entirely determined by that immediate sensorimotor information. The
crux of the matter is that animat’s motor state develops over time in such a way
that it reflects the history of the time-extended perception of the curve shape.
This does not happen by accident — it requires the animat to make particular
movements at particular times for the motor state to play a useful role in the
task’s fulfillment. This kind of investigation, in which sensorimotor dynamics



Minimal Categorical Perception with an NB-SMM 11

are simulated in isolation from neural dynamics, emphasizes the importance of
embodiment in this kind of cognitive process.

Braitenberg’s Vehicles [2] served as an example of the way in which ex-
tremely primitive models could display behaviour with a surprising resemblance
to cognitive behaviour. An NB-SMM model can be seen as an intermediate point
between the Braitenberg vehicles and a stateful controller like a CTRNN: While
the Braitenberg vehicle’s behaviour is a function of the sensor state (i.e. the
environment); The NB-SMM-controlled animat’s behaviour is a function of the
sensor and motor state (i.e. environment and body); and the CTRNN-controlled
animat’s behaviour is a function of the sensor, motor, and internal state (i.e. en-
vironment, body, and brain). Exploring the behaviours that are possible with the
NB-SMM, and those that are not, is a method for understanding the exact roles
of the body and the brain in the context of adaptive behaviour and embodied
cognition. Buhrmann, et al. analysed a CTRNN-controlled animat performing
another variant of this task [3], and part of their discussion highlighted the role
of the internal state of the hidden neuron which causes the system to alternate
between an approach regime and an avoid regime. In this context, the controller’s
internal stayed played a role analogous to a nervous system which modulates the
sensorimotor response in accordance with the agent’s goal. By the same token,
the NB-SMM model can be interpreted as simulating a system which lacks a
nervous system, but which nonetheless displays the same goal-oriented property.

The difference between the behaviour of the NB-SMM and CTRNN versions,
illustrated in Figures 3 and 5, demonstrate that the NB-SMM has some advan-
tages over the more typical model, even in an evolutionary robotics context. In
particular, the map’s complexity may be increased by adding nodes, without
increasing the dimensionality of the entire system’s state space. Meanwhile, the
CTRNN-based system with a three dimensional state space produced relatively
simple behavioural patterns. The value of the NB-SMM in this case is demon-
strated in the NB-SMM’s ability to produce a solution for the narrow-approach
variant where the CTRNN did not. At the same time, system’s behaviour is
relatively easy to visualize and interpret. In order for a CTRNN to match the
complexity of the behavioural patterns generated by the NB-SMM it would need
more neurons, thereby increasing the number of variables in the system and re-
ducing its interpretability.

Finally, the difference in fitness and behavioural patterns between the two
task variants is an unintuitive outcome. Each variant would seem to be simple
inversions of each other, with similar performance expected. This is perhaps a
misleading aspect of describing the task in functionalist terms such as identifying
the curve type and moving to the top of one — it would seem to follow from this
that it would be an equivalent process to identify the curve type and move to the
top of the other one. However although it is attractive to interpret the behaviour
of the animat as first distinguishing the curve type (i.e. moving into a particular
sensorimotor state) and then responding appropriately (slowing to a stop or
passing over the peak), these delineations only serve to aid the description of
what is in practice a single continuous act. Over the course of this act, the
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sensorimotor dynamics associated both with distinguishing the curves, and with
traversing to the peak, are intertwined. The way that the two properties of the
task description interact, i.e. which curve to approach, and how a successful
approach is measured, appears to have made the wide-approach variant simpler
than the other.

A consequence of this in terms of modelling is that seemingly trivial decisions
of task specification have the potential to impact the final behaviour of the model,
and this raises issues of how abstractions of sensorimotor dynamics affect our
ability to extrapolate our results to natural systems. Consider for example the
use of wheeled-animat styles of models as abstractions of moving organisms. It is
critical to the performance of the two-curves task that the animat be altering its
motor speed as it passes over each curve, so that it can use its motor state as a
proxy for the time it has spent over the curve. A wheeled-robot style animat has
a particular type of relationship between its motor and sensor dynamics, which
would be different from that of, say, a more naturalistic legged-robot. Would
such an animat be able to utilise its motor state in the same way as the one
presented here?
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