
Real-Time Visualization and Interaction with Computational Artefacts

Matthew Egbert1,2

1 School of Computer Science, University of Auckland, Auckland, NZ
2 Te Ao Mārama — Centre for Fundamental Inquiry, University of Auckland, Auckland, NZ

m.egbert@auckland.ac.nz

Abstract
Artificial Life research often involves the development and
analysis of computational artefacts such as simulations and
models. This generally involves an iterative process that
alternates between (i) modification of model and research goal
and (ii) and investigation of the model—a process that repeats
until the researcher is satisfied that they have produced a
publishable result.

The first part of this paper argues that real-time visualization
and interaction can improve this methodological process by
facilitating the development of an intuitive understanding of
the computational artefact, leading to more diverse and
productive research questions and more interesting results.

Existing tools for developing real-time visualization and
interaction involve substantial coding and are often designed
with software engineers rather than scientists in mind. The
second part of this paper thus introduces Realtime
Visualization and Interaction Toolkit (RVIT), a cross-platform
Python, Kivy and OpenGL based extendable framework, that
has been designed to facilitate the augmentation of Python-
based computational artefacts with real-time visualization and
interaction. RVIT is freely available and published in alpha on
github. With a critical mass of users, we hope it will become a
commonly used tool among ALIFE and other scientific
researchers and teachers.

Developing Simulations is an Interactive
Process

Investigation of computational models is generally an
iterative process involving

1. The proposal of a research target (a “question”).
2. The development of a computational model that will

allow investigation of the question.
3. Informal investigation of the model (often before it

is complete).
4. Repetition of steps 1–3 including modification of (a)

the model; (b) the techniques used to study the
model (what data is plotted, what parameters are
varied experimentally, etc.) and (c) the research
target itself—the ‘research question.’

5. A more formal investigation of the model. In some
cases the results of this more formal investigation
can also cause the researcher to return to steps 1-4.

Otherwise, when the researcher is satisfied, the
results of this investigation are published.

This methodology has been described as a symmetric ‘dance
of agency’ in the sense that the direction that the research
takes is not something that is arbitrarily chosen by the
research, but is instead influenced alternately by the
researcher and the target of study itself (Pickering, 1995).
The agency of the investigator is hopefully obvious, and the
agency of the target of study (in ALIFE, often a model) can
be made explicit with an example: when the model does not
do what the investigator wanted or expected, the investigator
changes the model, research goal, or the result of the
research. In this way, the model’s dynamics orient the
investigation, just as the investigator does.

When we recognize that this research process is interactive—
that our early, perhaps less formal investigations, play an
essential role in developing the ultimate research result—it
becomes apparent that the form of interaction between
investigator and artefact can also radically impact ultimate
research outcomes.

In this vein, we suggest that the typical interface between
investigator and computer model is rather unsatisfactory.
Simulations are often run and then analyzed. To study the
influence of a parameter change, a simulation has to be
stopped so that the code can be edited and the simulation be
restarted. While it is true that some models and some tool-
kits such as NetLogo (Wilensky, 1999) expose greater
degrees of interactivity, allowing on-the-fly modification of
parameters and real-time visualization, this is not the norm.

One reason for the status quo is historical. Computers used to
be slower, graphics non-existent, and so real-time
visualization and interaction (RVI) tools were essentially out
of the question. These constraint on the early computational
models developed into a methodological culture, where
visualization was post hoc and interaction essentially non-
existent. A second reason is the overly simplified received
perspective of science and “the scientific method,” where in a
desire to make results objective, the interaction between
investigator and the object of investigation is swept under the
carpet. A third reason for the status quo is the large degree of
effort required to develop a rich real-time interface to a
computational model. Established graphical user interface
(GUI) libraries such GTK2 are designed for software

engineers rather than scientists meaning that implementing a
simple visualization such as an animated real-time time-
series plot requires an often prohibitive degree of learning
and coding.

The recent Data Science movement recognises the
importance of visualization and the value in facilitating the
implementation of computational visualizations. This is seen,
for instance, in Jupyter Notebooks (Kluyver et al., 2016),
where code, equations, rich text and visualizations can all
exist within a single document. The Data Science process is
also somewhat interactive, involving a back-and-forth
between investigator and data, involving experimentation
with data-cleaning and finding the most useful ways to
visualize or otherwise draw conclusions from the data. But
this kind of interaction is different from the real-time
interaction that we wish to promote.

Specifically: data science style interaction is generally post
hoc, i.e., it takes place after the data has been generated.
What we are advocating for might be described as inter hoc
—it takes place during the event(s) of interest. To give an
example of this kind of interaction, we can consider Grey-
Walter and his ‘tortoise’ robots—see e.g. (Owen, 1997).
Instead of deciding in advance the environmental conditions
that he would program for his robots, he could dynamically
respond to them, chosing on-the-fly how to modify their
environment. Simply by putting a rubbish-bin or his foot in
front of the robot, or a candle on top of it and placing it in
front of a mirror, Walter had easily available a wide variety
of actions, enabled by the physicality of his artefacts, and the
diverse interactional space enabled him to develop a strong, if
informal, understanding of how his robots worked.

Informal understanding of complex systems is under-rated in
scientific reporting, but essential in its execution.
Experimental biologists and psychologists develop extensive
informal understanding of the objects of their study—
understanding that improves their ability to develop
successful formal and publishable investigations. But, as
things currently stand, this informal interactional
investigation is difficult or impossible for many
computational artefacts. In most cases, we can only edit some
code so as to change a parameter before re-running the
simulation. A richer interactional space with our
computational artefacts would facilitate this kind of informal
understanding, thus driving the production of more insightful
research involving computational models.

RVIT – Real-time Visualization and
Interaction in Python

We have developed a basic library for facilitating the rapid
development and modification of visualization and
interaction elements for scientific models. The highest design
priority was minimize the amount of code necessary to
generate RVI elements. Mainstream GUI libraries such as
OpenGL and gtk generally involve many lines of code to
implement a single visual or interactive element. RVIT
extends the Kivy UI library (Virbel, 2011) with scientific

visualization elements allowing researchers to rapidly
generate and modify visualization and interaction elements.
For example, a time-series style plot that tracks a scalar
variable simply by adding code that specifies a few details of
the visualization, which plots the var field of the model
object is achieved in 5 lines:

GraphRenderer:
pos_hint: {'x':0.0, 'y':0.5} # position on the screen
size_hint: (0.75,0.25) # size
target_object: model # the object
target_varname: 'var' # the field of obj to plot

A slider-controller for varying dynamically a scalar variable
in the simulation is also easily implemented using RVIT by
adding only the following lines.

SkivySlider:
 pos_hint: {'x':0.8 ,'y':0.5}
 size_hint: (0.05,0.5)
 slider_min: 0.0
 slider_max: 5.0
 target_object: model
 target_varname: 'parameter'

At this stage we have only implements a few scientific
visualization elements including GraphRenderer,
PointRenderer, ArrayRenderer, BarChartRenderer. As time
progresses we hope to have a wide variety of end-user
contributed visualization elements. Currently the interaction
elements are standard UI elements provided by Kivy. A
second design priority was to provide high-speed
visualization elements. Extending Kivy, we use OpenGL
shader techology to produce efficient visualizations that
require minimal programming.

With an active community we hope that RVIT can become a
widespread tool that changes the way that people think about,
develop and use computational models in scientific inquiry.

References
Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier, M.,

Frederic, J., ... & Ivanov, P. (2016). Jupyter Notebooks-a publishing
format for reproducible computational workflows. In ELPUB (pp.
87-90).

Holland, O. (1997). Grey Walter: the pioneer of real artificial life. In
Proceedings of the 5th international workshop on artificial life (pp.
34-44). MIT Press, Cambridge.

Pickering, A. (1995). The mangle of practice: Time, agency, and science.
Chicago: University of Chicago Press.

Virbel, M., Hansen, T., & Lobunets, O. (2011). Kivy–a framework for
rapid creation of innovative user interfaces. In Workshop-
Proceedings der Tagung Mensch & Computer 2011. überMEDIEN|
ÜBERmorgen. Universitätsverlag Chemnitz.

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/.
Center for Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston, IL.

	Developing Simulations is an Interactive Process
	RVIT – Real-time Visualization and Interaction in Python
	References

